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ABSTRACT

Recent progress in modeling of transport phenomena during dendritic alloy
solidification is reviewed. Starting from the basic theorems of volume averaging, a general
multiphase modeling framework is outlined. This framework allows for the incorporation
of a variety of microscale phenomena in the macroscopic transport equations. For the case
of diffusion dominated solidification, a simplified set of model equations is examined in
detail and validated through comparisons with numerous experimental data for both
columnar and equiaxed dendritic growth. This provides a critical assessment of the various
model assumptions. Models that include melt flow and solid phase transport are also
discussed, although their validation is still at an early stage. Several numerical results are
presented that illustrate some of the profound effects of convective transport on the final
compositional and structural characteristics of a solidified part. Important issues that

deserve continuing attention are identified.



NOMENCLATURE

Pe.o

interfacial surface area

area of the solid/interdendritic liquid interface
area of the dendrite envelope

concentration of a chemical species

specific heat

settling ratio

shape factor function

mean characteristic length or diameter of the solid phase
mean characteristic diameter of the dendrite envelope
mass diffusion coefficient

temperature gradient

chill heat transfer coefficient or enthalpy

Ivantsov function

species diffusion flux

interfacial species transfer rate per unit of volume
thermal conductivity

species diffusion length

liquidus line slope

solid/liquid interfacial drag

equiaxed nuclei density

nucleation rate

outwardly directed unit normal vector

envelope growth Peclet number, wpeR¢/Dj
multiphase Pelcet number, gjlv; - vgl de/Dy

solutal Peclet number at the dendrite tip, V(Ry/2D;

ambient Pelcet number for dendrite tips, Iv - vgl Ry/Dy



Qext

-

-1

<

external heat flux
radius

interfacial area concentration
time

temperature
cooling rate, dT/ot
velocity

volume of phase k
averaging volume
dendrite tip velocity
interface velocity

phase function

Greek Symbols

a

Ah
AT

diffusion Fourier number, 4Dstf/k§
dimensionless parameter, Eq.(82)
interfacial phase change rate or Gibbs-Thomson coefficient
latent heat of phase change
undercooling

volume fraction

internal solid fraction, £¢/(€5 + £9)
partition coefficient

flow partition coefficient

dendrite arm spacing

slip coefficient for solid

shape factor

density



1 viscosity

o stability constant
T shear stress

b4 a field property

Q solutal supersaturation

Subscripts

d interdendritic liquid
€ dendrite envelope
E eutectic point

f total liquid phase (d+1)

g grain
J phase j
k phase k

kj pertinent to phase k on the k-j interface
1 extradendritic liquid
L liquidus

Id pertinent to the extradendritic liquid at the inter- and extra-dendritic liquid interface

Is pertinent to the liquid phase at the solid-liquid interface
m melting point of pure metals

n normal direction

N nucleation

0 initial state

s solid

sd pertinent to the solid phase at the solid-interdendritic liquid interface
sl pertinent to the solid phase at the solid-liquid interface

t dendrite tip or tangential



W wall

1 primary
2 secondary

Superscripts

c critical

] due to species gradients

t macroscopic dispersion

r due to interface movement

- interfacial area-averaged
* effective

A fluctuating component

1. INTRODUCTION

Microstructural evolution and the distribution of phases and species are some of the
most fundamental and important issues in the science and technology of solidification of
metal alloys. The structure determines the mechanical properties of a casting or weld, and
certain chemical inhomogeneities can cause serious defects. Therefore, the metallurgist has
a keen interest in understanding, modeling, and controlling the physical phenomena
occurring during the liquid to solid transformation. For millennia, the optimization of
material properties essentially relied on a trial-and-error process, where different melt
compositions and casting practices were tried and the structure and properties of the
solidified part were subsequently examined. It was not until the advent of computers that
numerical solutions of the heat equation could be used to analyze casting and welding
processes. The connection to microstructure predictions was made by the early work of
Oldfield [1] on cast iron in the late 1960s. Almost at the same time, Flemings and

coworkers [2,3] started to model melt flow during solidification in order to predict



compositional inhomogeneities, i.e., macrosegregation, on the scale of a casting.
Significant progress in rigorously linking microstructural evolution relations to
macroscopic (system scale) heat flow calculations has only been made since the mid-1980s.
Similarly, but separately, the calculation of melt flow, solid phase transport, and
macrosegregation did not become commonplace until fully coupled numerical methods for
solving the Navier-Stokes equations reached a considerable level of maturity, in the 1980s.
Although there is a tight coupling between microstructure and convective transport, the
simultaneous prediction of both has only been attempted in the 1990s. Numerous recent
reviews are available that summarize the progress in these areas [4-11], and the latest
developments can be found in conference proceedings [12-15].

Solidification of metal alloys is characterized by the presence of a variety of
microscopically complex interfacial structures. The most common structure is the dendrite,
which can either exist in a columnar or equiaxed form, as illustrated in Fig.la. The
macroscopic region over which such solid/liquid interfaces exist is loosely termed the
mushy zone, so as to distinguish it from the pure liquid and fully solidified regions, see
Fig.1b. The mushy zone is roughly bounded by the solidus and liquidus isotherms, which
can be obtained for a given alloy composition from an equilibrium phase diagram. For the
simple phase diagram shown in Fig.1c, the last liquid to solidify is often of the eutectic
composition, and the eutectic reaction transforms this liquid into the o and P solid phases.
The phase diagram also describes the different solubilities of the solute in the solid and
liquid phases as a function of temperature. The segregation of solute at the solid/liquid
interface causes the establishment of microscopic concentration gradients in the liquid and
solid phases on both sides of the interface, and, in the presence of convection, large-scale
compositional inhomogeneities. These and other basics of alloy solidification are well
explained in textbooks [3, 16-18].

From a thermal scientist's perspective, the mushy zone can be viewed as a multiphase,

muiticomponent system with phase change, featuring multiple and disparate microscopic



interfacial length scales. Just as in boiling of liquid mixtures, the system-scale transport of
the phases (solid and liquid) by convection, together with heat transfer and solute
redistribution, play important roles. Furthermore, the nucleation, growth, and morphology
of the evolving phase(s) need careful consideration. However, there are numerous issues
that are unique to alloy solidification, the most important of which is the preservation of the
microstructure and compositional inhomogeneities in the solidified material. As in the more
recent analyses of other multiphase systems, solidification is starting to be modeled using
rigorously derived continuum conservation equations [8]. In this regard, the incorporation
of proper constitutive relations describing the interface topology and the phase interactions
on a microscopic scale continues to be the main challenge. Although the study of
microscopic phase interactions during solidification is a time-honored area within
metallurgy [18], much of the available information remains empirical. For example, it is
still largely impossible to quantify the interactions between an evolving microstructure and
convective melt flow. In fact, it can safely be said that the prediction of the structural and
compositional features of a solidified metal alloy on the scale of a casting or weld is still
more an art than science.

The purpose of this chapter is to review some of the most recent modeling work on
alloy solidification, where a tight coupling between microstructure and transport
phenomena at both microscopic and macroscopic scales is pursued. The emphasis is on
fundamentals and on exposing areas of future research. Despite the fact that some of the
recent work is already being applied to industrially relevant multicomponent alloys and real
shaped castings (see [15]), the review is limited to primary dendritic solidification of binary
alloys in simple molds.

The following section gives several examples of experiments that illustrate important
micro-/macroscopic aspects of alloy solidification. Section 3 discusses the general
modeling approach propagated here. In order to provide some perspective to the many

modeling issues involved, Section 4 concentrates on studies that consider diffusional



transport only. The inclusion of melt convection and the transport of solid phases is
reviewed in Section 5, while the conclusions and recommendations for future research are

summarized in Section 6.

2. OBSERVATIONS OF MICRO-MACROSCOPIC PHENOMENA IN
ALLOY SOLIDIFICATION

Figure 2a shows a typical columnar dendritic mushy zone for solidification from below
of the transparent model alloy SCN-ethanol, with a close-up of the dendrite tip region
provided in the lower portion of Fig.2b [19]. On the microscopic scale, we observe a
porous structure consisting of primary, secondary and higher order dendrite arms. In the
figure, the primary dendrite arm spacing is roughly 0.4 mm. The structure in the tip region
is highly irregular, and it is shown below that the growth kinetics of the dendrite tips play a
special role. The tips grow into an undercooled melt, which can be inferred from the
presence of growing equiaxed crystals above the columnar front (Fig.2b). Undercooling
refers to the melt being in a metastable state below the equilibrium liquidus line and
represents the driving force for dendrite tip growth. On a larger scale, it can be seen that the
primary dendrites do not exactly grow in a direction opposite to the heat flow (Fig.2a).
Each cluster of dendrites having the same orientation constitutes a crystal or grain, and the
boundaries between the grains are a common feature of etched cross sections of solidified
metal alloys (see below).

Much research has been performed to predict the microstructural features in dendritic
solidification. Important considerations are the stability of a solid/liquid interface,
coarsening or ripening of the smallest-scale dendrite arms as a function of time, and the
growth velocity and radius of the dendrite tip. Some of the available semi-empirical
relations are presented below in Section 4. Almost all quantitative information is limited to
diffusion-controlled solidification, and the important effects of convection are mostly

ignored in the metallurgical literature. The dendritic structure persists in the as-cast alloy



due to its compositionally segregated nature (microsegregation). Second (solid) phases,
such as the eutectic, and microporosity are usually found in the interdendritic spaces.

The microstructure also controls the melt flow through the porous mushy zone during
solidification and, thus, the occurrence of macrosegregation. Furthermore, flow/dendrite
interactions may play an important role in generating free equiaxed crystals. Figure 3
illustrates the formation of a channel in a columnar dendritic mushy zone due to local flow
instabilities [20]. Such flow channels cause severe macrosegregation in the form of A-
segregates or freckles in castings. Fragmentation of the dendritic structure within the
channels (Fig.3b) and the subsequent ejection of fragments by the flow (Fig.3a) is one of
the mechanisms associated with the formation of equiaxed grains (see below).

Figure 4 illustrates several additional aspects of equiaxed solidification. The
experiments [21] were performed using the transparent NH4Cl-H20O model solution. On
the macroscopic scale, a swarm of freely moving crystals exists in the upper portion of the
test cell, while the lower portion consists of a packed bed of sedimented crystals. Figure 4a
is a shadowgraph image, visualizing the density gradients in the melt. A close inspection
reveals the presence of a solutal plume in the wake of each sedimenting crystal, implying
that the crystals are growing while moving through the undercooled melt (the latent heat as
well as the solute are rejected into the liquid phase). The irregular nature of the packed bed
is caused by the complex thermosolutal convection currents in the melt. An important issue
is the mechanisms associated with the origin of the equiaxed grains and their number
density. Numerous theories have been put forward and quantitative models are not
available. The theories can be roughly divided into two groups [22]: (i) heterogeneous
nucleation in the bulk melt, which can be promoted through the use of grain refiners
(inoculants) and (ii) separation of small dendrite fragments from the mold wall, the upper
free liquid surface or already existing columnar dendrites through mechanical forces or,

more likely, a localized remelting ("pinch off") process. In the latter mechanism, melt
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convection is necessary to transport the fragments into the interior bulk liquid where they
may survive and grow into equiaxed crystals.

A fine equiaxed grain structure is often preferred over a columnar structure for a
number of reasons (single-crystal turbine blades are an important exception) [23]: (i)
uniform mechanical properties and better overall strength and fatigue life, (ii) more finely
dispersed second phases and porosity, (iii) less macrosegregation, (iv) improved feeding to
compensate for shrinkage and less hot cracking, (v) improved surface properties, and (vi)
improved machinability and fabricability. However, in many castings and welds a mixed
columnar/equiaxed grain structure is present and it becomes crucial to understand and
control the columnar-to-equiaxed transition (CET). A large number of studies have tried to
clarify the main factors that influence the CET (Wang and Beckermann [24] review some of
them). As an example, consider the simple one-dimensional casting experiments by Ziv and
Weinberg [25]. Here, an Al-3wt% Cu alloy was unidirectionally solidified from below.
The overall configuration is thermally and solutally stable, thus minimizing the influence of
melt convection. Figure 5a shows a sequence of grain structures where the heat transfer
coefficient at the bottom was varied. It can be seen that the length of the columnar region
increases with stronger cooling. It is clear that a simple heat flow and solid fraction
evolution model would not capture this effect. Obviously, a detailed consideration of the
competitive growth of columnar and equiaxed crystals on a microscopic scale is necessary.
A yet more intriguing effect is shown in Fig.5b, where the cooling rate and all other
conditions were identical, except for the addition of minute amounts of a grain refiner (here
TiB2). With increasing amounts of grain refiner, the structure changes from a coarse-
grained mixed structure to a fine-grained fully equiaxed one. Other experiments have
examined the influences of initial melt superheat, melt composition, mold surface
roughness, mold vibration, mold rotation, stirring, and others. Interesting accounts of this
research can be found in [26]. These effects have been understood on a qualitative level for

decades. Nonetheless, the prediction of the nature and size distribution of grains in
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solidified metal alloys has been largely prevented by the intricate physical phenomena
involved.

Examples of the effects of microstructure on macroscopic transport are provided in
Figs. 6 to 8. Finn et al. [27] performed experiments on continuous casting of a round Al-
4.5wt% Cu ingot in the configuration illustrated in Fig.6a. The superheated alloy is poured
into the water cooled mold at the same mass flow rate at which the casting is withdrawn at
the bottom. Macrosegregation data are shown in Fig.6b for two different experiments. No
grain refiner was used in the first experiment, and the microstructure was columnar
dendritic as shown in Fig.6c¢. In the second experiment, the use of a grain refiner resulted
in the mixed globular-dendritic equiaxed structure of Fig.6d throughout most of the ingot
cross section. The macrosegregation profiles for both experiments show strong positive
segregation near the ingot surface (termed inverse segregation), which can be explained by
solidification contraction and back flow of Cu-enriched liquid through the coherent ingot
shell first formed in the mold [27]. Large differences in the macrosegregation profiles
between the two experiments can be observed near the centerline (Fig.6b). These
differences were attributed to the influence of the microstructure on the resistance it offers
to the interdendritic melt flow, as characterized by the permeability of the mushy zone. In
the highly dendritic columnar case without grain refiner, the relatively dense and
impermeable mushy region prohibited the advection of enriched interdendritic liquid to the
ingot centerline, resulting in negative centerline segregation. On the other hand, the more
coarse and permeable equiaxed structure of the grain refined ingot allowed for the advection
of enriched fluid toward the centerline producing positive segregation there [27]. This
positive centerline macrosegregation does not support previous theories on how the
transport and settling of free, unattached, solute lean dendrites causes negative centerline
segregation [28]. However, the detection of a duplex structure, consisting of a mixture of
fine dendrites and coarse equiaxed grains, near the centerline in the grain refined case

(Fig.6d) can be regarded as an indication of the presence of solid phase transport.
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Obviously, the ability to model and predict the microstructural evolution together with the
melt flow, solid transport, heat transfer, and advection of solute would have a strong
impact on understanding and controlling these undesirable macrosegregation patterns.

Another example of the interplay between grain structure and macrosegregation is
provided in Fig.7. Figures 7a and 7b are cross sections from a low-alloy steel casting
solidified in a simple sand mold [29]. Figure 7a clearly shows an inner equiaxed zone in
addition to the columnar dendrites extending from the mold walls. In Fig.7b, the point of
significance here is the negative carbon macrosegregation region that directly corresponds
to the inner equiaxed zone. Although such observations are not new, the detailed transport
phenomena leading to the negative segregation in equiaxed solidification, as well as the
interactions between equiaxed and columnar growth, are poorly understood.

As already mentioned, one issue that seriously hampers present modeling efforts is the
uncertainty associated with the origin of the equiaxed crystals and their transport. Figure 8
illustrates the settling of equiaxed crystals in a solidifying Pb-Sn eutectic alloy [30]. The
micrographs indicate the presence of equiaxed, Pb-rich crystals both near the bottom of the
sample and above a stainless steel screen which was inserted near the center. As expected,
the corresponding macrosegregation pattern shows a strong increase in the Pb
concentration towards the screen and the sample bottom, with a ~20% jump at the location
of the screen. This experiment is especially intricate, because the eutectic melt was
substantially undercooled before solidification. Without undercooling the entire sample
would consist of a eutectic structure with no appreciable macrosegregation [30]. The
undercooling causes the primary Pb phase to nucleate first. The Pb-rich crystals settle
down and leave a Sn-rich melt behind, so that primary Sn-rich dendrites grow in a
columnar fashion both from the top and below the screen. Eutectic exists only between the
columnar and equiaxed regions. Apparently, the modeling of the nucleation in the
undercooled melt requires a thorough understanding of the interfacial energies in the Pb-Sn

system and other non-equilibrium thermodynamics issues.
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This section has illustrated no more than a few examples of the complex nucleation,
growth, and transport phenomena occurring in alloy solidification. In every case, their
modeling involves detailed and simultaneous consideration of processes occurring over
multiple and disparate length (or time) scales. It should be clear now that the mushy zone is
not just a porous medium of some average structure with the melt flowing through it.
Instead, alloy solidification is a physically rich area that has evaded modeling efforts except

in a few limiting cases.
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3. BASIC MODELING CONSIDERATIONS

Modeling of transport phenomena occurring during dendritic alloy solidification has
received considerable research attention in the past several decades [8,10]. Recently,
interest has been focusing on an important and promising approach, namely micro-
macroscopic modeling. The main goal of this approach is to incorporate descriptions of
fundamental microscopic phenomena, such as nucleation, undercooling and grain growth,
into macroscopic heat flow calculations in order to predict microstructure formation of a
solidifying material on the system scale. Reviews of micro-macroscopic modeling have
been provided by Rappaz [4] and Stefanescu [9].

In an attempt to achieve detailed coupling between micro- and macroscopic phenomena,
Ni and Beckermann [31] proposed a two-phase model for mass, momentum, energy and
species transport in a solidifying system. The model is formulated by viewing the solid and
liquid phases separately and averaging the field properties of each phase over a
representative elementary volume (REV). Through the volume averaging process, phase
interaction terms appear in the resulting macroscopic balance equations that reflect the
effects of the transport phenomena occurring on the microscopic scale. These interaction
terms are all proportional to the solid/liquid interfacial area per unit volume, which
represents the sole microscopic length scale. The same volume averaging technique was
employed by Ganesan and Poirier [32] to derive macroscopic mass and momentum
equations for a stationary solid phase.

Nevertheless, volume averaged two-phase models are not well suited for incorporating
microstructural features present in dendritic solidification. This problem originates from the
single-scale averaged description of phase behaviors. In traditional volume averaging, no
distinction is made between properties of a phase associated with different microscopic
length scales. The phenomena occurring on various microscopic length scales are smeared
and modeled using a single mean characteristic length (i.e., the interfacial area

concentration). Referring back to Fig.2, it can be seen that, in dendritic growth there exist
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at least three disparate microscopic length scales that are smaller than the characteristic size
of an averaging volume: (i) the overall size of the crystal or the primary dendrite arm
spacing, (ii) the secondary and higher-order dendrite arm spacings, and (iii) the radius of a
dendrite tip. The transport phenomena occurring on the various microscopic scales differ
greatly from one another and cannot be well described based on a single mean characteristic
length, although they are all taking place within the same averaging volume. In other
words, a single-scale model provides insufficient resolution to capture dynamic behaviors
on several microscopic length scales. Such resolution is, however, required for the
complete incorporation of microscopic effects in a macroscopic model and the prediction of
microstructure formation in a solidifying system.

Considerable progress has been made to account for the heterogeneous nature of
microstructures in the micro-macroscopic modeling of both equiaxed [33-35] and columnar
[36,37] dendritic solidification. In the models of equiaxed dendritic growth, the necessary
resolution is obtained by viewing the liquid phase in a control volume as two distinct fluids
associated with two length scales: the liquid within the dendritic structure and the liquid
outside the equiaxed grain. It is then possible to separately account for the different solute
diffusion phenomena in the interdendritic structure and the dendrite tip region, and more
importantly, to incorporate a growth model for the dendrite tips. Similarly, when analyzing
columnar dendritic solidification, Flood and Hunt [36] distinguish between the liquid in the
interdendritic region and that outside the columnar front, and also take into account the
undercooling at the primary dendrite tips.

Although these recent investigations have obtained successful results, they fail to
provide a consistent and general framework for micro-macroscopic modeling of dendritic
solidification. For example, in Dustin and Kurz's model [33] of equiaxed growth and in
Flood and Hunt's model [36] of columnar solidification, the growth model for the dendrite
tips is introduced at the expense of not conserving solute outside of the grain envelope or at

the columnar front [4]. The same practice was repeated by Kerr et al. [38]. A model that
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not only conserves solute but also incorporates a dendrite tip growth model in a rigorous
and consistent manner is due to Rappaz and Thevoz [34]. Unfortunately, lengthy
calculations are required to obtain the microscopic solute profile outside each equiaxed
grain, which limits its utility in a macroscopic model. Although the analytical version of the
model [35] is suitable for incorporation into a macroscopic model, it is implied that the
average concentration of the liquid outside of the grain remains at its initial value, which
may not be valid in some cases (e.g., in the presence of macrosegregation). Finally, none
of the previously mentioned micro-macroscopic models accounts for finite-rate solute
diffusion in the solid on a microscopic scale.

More recently, Wang and Beckermann [24, 39-41] developed a unified model for both
equiaxed and columnar dendritic solidification, that is based on a multiphase approach and
volume averaging. The basic modeling approach is introduced in the next subsections,

while more details and applications are discussed in Sections 4 and 5.

3.1 Multiphase Approach

Consider a small volume element that contains several equiaxed or columnar dendritic
crystals, as schematically illustrated in Fig.9. An interfacial scale (having the unit of length)
is defined as the ratio of the volume of the structure to the interfacial area, so that two
different interfacial length scales can be distinguished in Fig.9. In the equiaxed case, the
solid crystal and the interdendritic liquid share a common interfacial length scale of 10-0 to
10-5 m, whereas the interface between the liquid outside the grains and the interdendritic
liquid has a larger length scale (of the order of 104 to 10-3 m). The same is true for the
columnar case, if one notes the difference between the primary and higher-order arm
spacings (see Fig.9b). The size of the volume element is chosen such that it is much larger
than all interfacial length scales, but small compared to the system scale (of the order of
10-! to 109 m). Hence, a proper volume element could have a radius between 10-3 and 10-2

m. A volume element of this size is what all macroscopic models are actually based on.
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The hypothetical interface between the interdendritic liquid and the liquid outside the
crystals is referred to as the dendrite envelope. The specification of this envelope is
somewhat subjective. However, a reasonable choice appears to be a smooth surface
connecting the primary and secondary dendrite arm tips, as shown by the interrupted line in
Fig.9. More details on the envelope topology can be found below.

Based on the above discussion, the volume element can now be considered to consist
of three different phases: the solid phase and the two liquid phases. The two liquid phases
separated by the dendrite envelope are distinguished by their different interfacial length
scales. This multiphase approach to a heterogeneous system is realistic since a fluid within
a structure of a larger scale really could have different macroscopic properties than the same
fluid in a smaller scale structure. It has long been recognized that the effcctivcr transport
properties of a fluid within a microstructure are not only dependent on its physical
properties, but also on the geometry of the structure [42-44].

In the multiphase approach, separate macroscopic conservation equations are
formulated for each phase. These macroscopic equations are linked through interfacial
transfer terms, which reflect the microscopic transport phenomena present at the interfaces.
The new interface between the two liquid phases (i.e., the envelope), thus, provides an
opportunity to incorporate additional microscopic phenomena in the model and transmit
information from the two different length scales into the macroscopic equations. The
macroscopic conservation equations are derived using the volume averaging technique,

which is described next.

3.2 Volume Averaging

Volume averaging has been a popular technique to derive macroscopic conservation
equations for multiphase transport phenomena with and without phase change. In its
application to solidification, a number of advantages have been pointed out [31]. Volume

averaging shows how the various terms in the macroscopic equations arise and how the
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resulting macroscopic variables are related to the corresponding microscopic ones. This
gives considerable insight into the formulation of constitutive relations for the incorporation
of the microscopic phenomena. In this work on heterogeneous solidification systems,
volume averaging is also attractive because it shows how physical phenomena occurring on
one length scale are linked to those on another scale in a macroscopic description.

The averaging volume, V, is shown in Fig.9. Rigorously, the spatial smoothing of a
physical property belonging to the smaller scale phase over the averaging volume, V,,
requires the knowledge of the transport equations first averaged over a smaller volume.
Hence, in order to develop a macroscopic equation for the smaller scale phase in a
heterogeneous system, based on the volume V, the microscopic or point equation must be
spatially averaged successively over two averaging volumes of different size. This is the
basic idea underlying the so-called dual-scale volume averaging technique that was recently
developed by Wang and Beckermann [45]. However, the averaging theorems established
for that technique reduce identically to those in the conventional volume averaging method,
if it is assumed that the smaller averaging volume is spatially independent (but it can be time
dependent) inside the larger volume, V,. Therefore, for the sake of simplicity, the
conventional volume averaging method is employed here, and each fluid having a distinct
length scale is viewed as a separate phase. Since the details of the method have been well

documented [46-49], only the averaging theorems are provided in the following:

oWx  o<¥i> 1

I i A AL Yirw-ndA ¢))
<V¥p> = V<Wy> + VL YindA 2)

where the averaging operator and the intrinsic volume average are defined, respectively, as

<¥i> = VLJ XkPrdV (3)
o)V,
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<Pp>k = L Xk¥PrdV “4)
Vk VO

with Xy denoting a phase function, equal to unity in phase k and zero elsewhere, and Vi is
the volume of phase k in V.

The factor n in Eqgs.(1) and (2) denotes the outwardly directed unit vector normal to an
interface, and w is the velocity of the interface. Note that Ak stands for the total interfacial

area of the k-phase adjacent to all other phases j; i.e.,

Ak= Y Akj 5)
J.j#k

For Wy=1, we obtain from Eq.(3) the definition of the volume fraction, g, as

& = Vi/Vo ©)
In addition, it follows that

Yex=1 ¢)
and

<Fi> = g< P>k ®)

Furthermore, the fluctuating component of Wy can be defined as

A
Yy = P - <Pk )]

3.3 Macroscopic Equations

The microscopic (point) equations governing mass, momentum, energy, and species
conservation within a phase k are summarized in the first colunm of Table 1. Tt-lrough
integration over V,, and making use of Egs.(1) and (2), the corresponding macroscopic
equations and interfacial balances can be derived. The details of the derivations have been
well documented (8, 46-50], and only the final, simplified result is shown in Table 1. All
interfacial integrals are already modeled using well-accepted basic constitutive relations

(e.g., see [311). The overbar denotes interfacial quantities. The volume-averaged diffusive
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fluxes and the shear stress may be modeled by introducing effective (macroscopic)
diffusion coefficients and viscosities, which depend on the microstructure, and the
fluctuating components of the thermophysical properties may be neglected (see below). The
dispersive fluxes are left unmodeled in the averaged equations.

At this point, the macroscopic equations in Table 1 are valid for almost any multiphase
system. The adaptation to alloy solidification requires careful specification of the interfacial
area relations, interfacial transport coefficients, and other supplementary relations, in
accordance with the multi-phase/-scale approach outlined in Section 3.1. This is illustrated
in Sections 4 and 5 for diffusion-controlled and convection-dominated dendritic alloy

solidification, respectively.
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4. DIFFUSIONAL TRANSPORT IN DENDRITIC ALLOY
SOLIDIFICATION

The vast majority of alloy solidification models neglects melt convection and solid
phase transport. Such a simplification is quite instructive from a fundamental point of view,
but cannot be justified for most real solidification processes. Nonetheless, this section
attempts to provide a unified overview of present diffusional theories of dendritic alloy

solidification.

4.1 Reduced Macroscopic Equations

With vg=0, the averaged equations of Table 1 reduce to relatively simple heat and
solute diffusion equations for each phase k together with the mass conservation equations
and the interfacial mass, energy, and solute balances. Before embarking on their solution, it
is important to examine the time (or length) scales for heat and solute diffusion. The Lewis
number (i.e., the ratio of the thermal to the mass diffusivity) of metal alloys in the liquid
state is of the order of 104. In the solid state it is even higher. A straightforward analysis
then shows that, for common solidification and cooling rates, (i) the phases in the
averaging volume can be assumed to be in thermal equilibrium so that the averaging volume
is isothermal, and (ii) solute diffusion on the macroscopic scale does not need to be
considered. Under the first assumption, the energy equations for each phase can be added

up and a single heat conduction equation can be written for the mixture temperature:

pc %r =V.(kVT) + pAh %% (10)

where pc and k are the mixture thermal capacitance and effective thermal conductivity,
respectively. The last term on the RHS of Eq.(10) arises from converting the phase

enthalpies to temperature and accounts for the latent heat release in the mushy zone due to

an increase in the solid volume fraction, €5. Equation (10) is valid for all phase volume
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fractions and reduces to the correct limits in the pure solid and liquid regions. The validity
of Eq.(10) is examined in more detail in [8].
With the neglect of macroscopic solute diffusion, the mass and solute conservation

equations for a phase k reduce to

0 _
tE&P = 2 Tgj= X SkjpkWnkj (11)
G.j#K) G. j#k)

d r j
SEPCPR = 3 Jij= T Ok +1i
0. j#k) G, j#k)

—  StiovDr —
= 3 [N+ R (Cg - <G (12)
G. j#K) J
and the interfacial balances
[kj+Tjk=0 and Jkj+Jj=0 (13)

where wpkj and Skj (=Akj/Vo) are the normal velocity and the area concentration,
respectively, of the interface between phases k and j. Other symbols are defined in the
Nomenclature.

In accordance with the multiphase approach for dendritic solidification outlined in
Section 3, we will consider a three-phase system consisting of the solid (k=s), the
interdendritic liquid (k=d), and the extradendritic liquid outside the dendrite envelope (k=1),
so that € + €q + €] = 1. It is further assumed that according to Fig.9 the dendrite tips have
only pointwise contact with the dendrite envelope. Hence,

Ssd=Sds=Ss; Sa1=S1d=Se and Sg=§5=0

Wnsd = -Wnds = Wns;  Wndl = “Wnld = Wne T (14)
These relations imply that there exists no direct coupling between phases s and 1, while
phase d interacts with both phases s and I. At the d-1 interface, phases d and | are actually

the same liquid, so that

Ca=Cyu= C (15)

23



where subscript e in the above two equations denotes the dendrite envelope. At the s-d
interface local thermodynamic equilibrium prevails, and the linearized liquidus and solidus
lines of the equilibrium phase diagram (Fig.1c) give the following

= = —~ _T-T
Cod/ Cas=x: Cos = ™ (16)

Assuming further that the densities of the liquid and solid phases are equal and

constant, the mass conservation equations can be written as
des

at - Ss Wns (17)
de _
Sesteq) =- 3 = Seiine (18)

and, after a few manipulations [39], the solute balances become

phase s

= 0g SDS
Caage +

d(es<Cs>9)

ot (Csd <Cs>%) (19)

phase d

a  _
d(eg<Cg>9) = (G - Cye )'T + Ce%d L SsDi (Cys - < Cd>d)+ SeD' (Ce - <Cg>%) (20)

phase |
IE<Cp) =93¢ S.D —
T e D@ <op o)
s-d interface
(Cas -ésd}aﬁ- SSD' (Cys - <Cd>d)+ (csd <Cs>S) (22)

d-l interface (dendrite envelope)

1 1
= <Cp! + =<Cygd
C, =M la 23)
1.1
b la

The meanings of the various solute diffusion lengths, lkj, in the present three-phase system

are schematically illustrated in Fig.10 and further discussed in Section 4.3. Geometrical
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relations for the interfacial area concentrations, Sg and Se, are derived in Section 4.2.
Because the normal envelope velocity, we, does not appear in Eq.(23) (since Edl = Eld),
the kinetics of the dendrite envelope need to be prescribed separately, which is shown in
Section 4.4. Otherwise, the above equations constitute a full system for the unknown
volume fractions, concentrations, and temperature, if supplemented by proper initial and
boundary conditions.

It is noteworthy that all model equations have clear physical interpretations. For
example, Eq.(19) simply states that the change in mass of solute in the solid results from
the combined contributions of movement of the solid/liquid interface and solute diffusion
across the interface. The solute balance at the s-d interface, Eq.(22), implies that the solute
rejected during phase change is diffused into both the solid and interdendritic liquid phases.
Finally, Eq.(23) indicates that the concentration at the envelope interface, Ee, is a
diffusion-resistance weighted mean of the averaged concentrations in the adjacent phases,
since no phase change occurs at this interface.

Another salient feature of the present model is that it provides the same set of
conservation equations for both equiaxed and columnar dendritic solidification. In other
words, the model represents a unified theoretical framework for both modes of
solidification, while leaving descriptions of the different physical characteristics of each

mode to supplementary relations, as shown next.

4.2 Morphological Relations

The interfacial area concentrations, Sg and Se, characterize the topology of the
interfacial structures, and are thus related to complex microscopic phenomena, such as the
growth of various solid microstructures, impingement of interfaces and coarsening of
dendrite arms. The area concentrations play important roles in the modeling of the
interfacial transfer terms and need to be modeled through supplementary relations, which

can be developed from either experiments or certain theoretical considerations. In fact, it
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has recently been proposed to base micro-macroscopic models directly on the specific
surface area, Sy [51]. The inverse of the specific surface area is a more accurate measure of
the length scale of a microstructure than the traditionally employed spacings and can easily
be measured. The interfacial area concentration, S, is related to Sy by S = Sy(1-€), where €
is the volume fraction of the microstructure under consideration. Hence, once relations for
Sy become available, they can be used in the present model.

In the following, a more traditional approach is taken, and an attempt is made to relate
the interfacial area concentrations to certain dendrite spacings, the nuclei density, time
(through coarsening), and the various volume fractions (which are also functions of time).
In the present model, different length scales have been distinguished and, thus, it is
possible to relate the interfacial area concentrations to such metallurgical paraméters. This
also enables the incorporation of microstructural phenomena (e.g., coarsening) that occur
only on a particular length scale [52]. This matter is obscured in regular two-phase models

through the use of mean geometrical parameters for the averaging volume [31].

4.2.1 Solid/Liquid Interface. The area concentration of the interface between the
solid and the interdendritic liquid can be modeled by assuming a simple one-dimensional
plate-like geometry of the secondary dendrite arms as shown in Fig.11. This is applicable
to both equiaxed and columnar structures and is traditionally adopted in most microscopic

analyses. For such a geometry, it is readily shown that
_ 8312

dg = (24
1-g;
and
2
§. =% 25
$ " (25)

Substituting Eq.(24) into Eq.(25), we obtain a relation between Sg and the mean

characteristic length (diameter) as
25

Sq=—"— 26
* T (1-ep)ds 20
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It is interesting to see that this result matches well with the general expressions obtained by
DeHoff and Rhines [53] and Bird et al. [54]. The numerical factor can be adjusted for other
choices of the geometry. In addition, we note that Eq.(25) is ready for the incorporation of
the coarsening effect. For example, by using the coarsening law established by Kattamis et

al. [55]:
A2 = Bt,” @7

Eq.(25) gives

S~ (28)
where t, is the local ‘aging' time. This result is consistent with the coarsening experiments
conducted by Marsh and Glicksman [56] at a constant solid fraction.

Note that due to the assumption of a one-dimensional plate-like geometry for the
solid/liquid interface, the interfacial area concentration, Sg, is not an explicit function of the
solid volume fraction (but Sy is; see above). This may not be a good approximation during
the initial and final stages of solidification, when the interface experiences qualitative
changes in its topology. This problem can be overcome by using the correction factor for
the interfacial area due to Avrami [57] to account for impingement of interfaces or the

empirical relation proposed by Speich and Fisher [58].

4.2.2 Dendrite Envelope. The area concentration of the dendrite envelope is modeled
by introducing an envelope shape factor defined as

¢= Aequivalenl/ Aactual T (29)
By equivalent we mean an equivalent sphere or cylinder of the same volume as the actual
crystal envelope. Equiaxed crystal envelopes are most appropriately described by
equivalent spheres, while equivalent cylinders are chosen for the columnar case. The shape
factors are schematically illustrated in Figs.12a and 12b. A shape factor always lies
between zero and unity since a sphere and a cylinder have the least possible surface area for

three-dimensional and axisymmetric bodies, respectively; however, for envelope shapes
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similar to the ones shown in Fig.12, ¢, is relatively close to unity [59]. If the envelope is
shape preserving during growth, ¢, can be taken as a constant.
A. Equiaxed Growth

For equiaxed growth, the diameter of the equivalent sphere, de, can be related to the

number of crystals per unit volume, n, as

do = (6(1-81))1/3 30)

nw

Then, the following relation for S can be written:
Se = i(361t)1/3 nlf3 (1-e)2/3 (31)

The number of equiaxed crystals per unit volume, n, must be calculated from a nucleation
model, according to

5 =0 (32)
where 11 is the nucleation rate. In the present context of diffusion-controlled solidification,
the source of equiaxed grains would be solely due to heterogeneous nucleation. The basic
theory of heterogeneous nucleation has been outlined by Turnbull [60]. As reviewed in

Rappaz [4]

it = K(ng - n)exp[ (33)

K3 ]
T (AT)?
where ng is the initial nucleation site density, AT is the undercooling, K is a constant
related to the collision frequency of atoms of the melt with the nucleation sites of the
heterogeneous particles, and K3 is related to the interfacial energy balance between the
nucleus, the liquid, and the foreign substrate on which nucleation occurs [4].

This nucleation theory has been shown to predict incorrect equiaxed grain sizes (see
[4]) and more pragmatic approaches have been developed. Among them are the statistically
based continuous nucleation theory due to Thevoz et al. [61] and the instantaneous
nucleation concept due to Stefanescu et al. [62]. The latter can be simply written as

it = ng &(T — TN) (34)
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where Ty is the critical nucleation temperature and J is the Dirac delta function. The
number of nucleation sites, ng, must in turn be calculated from an empirical relation
reflecting the influence of the cooling rate on the activity of the foreign substrates. All of the
above approaches require the measurement of the grain density in a solidified melt sample
for calibration. In other words, they are not truly predictive. Other complications arise in
the presence of convection, which is discussed in more detail in Section 5.
B. Columnar Growth

By assuming a square pattern of the columnar dendrites on a transverse cross-section,
as shown in Fig.12b, the equivalent diameter, de, can be related to the familiar primary arm

spacing, A1 , such that

4(1-gp\1/2
de = [(—‘—)) M 35)
T
For the equivalent cylinders assumed in columnar growth, the envelope area concentration
becomes
Se = —-(4m) (1) 21 (36)
e Al

It should be mentioned that Eqs.(35) and (36) are also valid for other arrangements of the
dendrites, except for a slight change in the numerical factor.

The primary arm spacing, A, depends mainly on V; and G, the columnar front
velocity and the temperature gradient. Hunt [63] developed a theory to predict the primary

dendrite arm spacing:

A1 = {64 Dimy(1-K)Co} VAG-12v /4 37)
Other theories result in essentially the same equation except for a different numerical

constant [18].
By comparing Eq.(31) with Eq.(36), it is apparent that the number density of equiaxed

crystals, n, can equivalently be viewed as the number density of primary arms in columnar
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solidification, that is nl/3 ~1/A|. Furthermore, Eqs.(31) and (36) reveal the following
important parametric relation:

Se ~nlBor 1/ (38)

The final equivalent radius (Rg=d¢/2) of a dendrite, which is useful in the calculation of

the diffusion lengths, can be obtained from Eq.(30) or (35) by taking £=0. Similar to the

solid/liquid interface, the envelope area concentrations expressed by Egs.(31) and (36)

need to be modified during the initial and final stages of solidification. In particular, S,

should be equal to zero for €=0.

4.3 Diffusion Lengths

The diffusion lengths characterize the magnitude of the diffusive flux between an

interface and the adjacent phase. In view of Fig. 10, they can be defined as
Cyj - <Ci>k (39)
_9Ck
on i

kj=

where the denominator represents the mean concentration gradient in phase k normal to the
kj interface. The diffusion length is generally a complicated function of the micro-scale
phenomena. Several simple analytical results are described below. Here, it is important to
realize that analytical results are desirable so as to minimize the numerical effort. In the
presence of convection, the diffusion lengths are closely related to the drag, and heat and
mass transfer coefficients at the interfaces within Vg, which is discussed in more detail in

Section 5.

4.3.1 Solid Region. The modeling of the diffusion length in the solid is important for
the prediction of finite-rate solute diffusion and, hence, microsegregation in a solidified
alloy. For dendritic solidification, Ohnaka [64] has presented an elegant model that gives

good agreement with experimental data and fits well into the framework of the present
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formulation. Following his procedure, the present derivation is based on a 1-D plate-like
dendrite arm geometry, as shown in Fig.11. A parabolic concentration distribution is
assumed in the solid phase. The centerline of the dendrite is taken to be a line of symmetry
and the concentration at the solid/liquid interface is given by the phase diagram. Then, with
the definition of the diffusién length, Eq.(39), it is readily shown that [39]

lsg = dg/6 (40)
The mean diameter of the solid phase, dg, can be related to the secondary dendrite arm
spacing, A2, and the volume fraction &g [see Eq.(24)]. The derivation can be modified for
other dendrite arm geometries such as cylinders and spheres. The same result is obtained

except for a change in the numerical factor of the order of unity.

4.3.2 Interdendritic Liquid. For a dendrite envelope closely encompassing the
dendrite arms, a similar analysis as that for the solid yields that the diffusion lengths in the
interdendritic liquid, /45 and /gj, are proportional to the characteristic interdendritic spacing,
ie.,

lgs and lg ~Ap 41)
Together with Eq.(40), this implies that the diffusion lengths in the interdendritic liquid and
the solid are of the same order of magnitude. However, because the liquid mass diffusivity
is typically several orders of magnitude larger than that of the solid, it is usually safe to
assume that the interdendritic liquid is solutally well-mixed and, thus, it is not necessary to

accurately model finite-rate solute diffusion in the interdendritic liquid.

4.3.3 Extradendritic Liquid. In contrast, one has to carefully model the diffusion
length in the liquid outside the dendrite envelope, in order to account for solutal
undercooling of the liquid ahead of the dendrite tips. This can be done by assuming that (i)

the envelope is spherical with an equivalent radius R, and (ii) solute diffusion is one-
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dimensional and quasi-steady in the moving coordinate system fixed to the envelope
surface, as illustrated in Fig.13.

By solving the differential equation governing solute diffusion in the extradendritic
liquid, it can be shown that the concentration profile is of an exponential nature [39].

Substitution of the profile into the definition of the diffusion length yields
1

ha/Rg = P—le(l' éexp[-l’e(l-gl)lB]J x2exp(
€| (

Pe(1-g))2/3
plB3 X ] dx)

(42)

where x is a dummy variable of integration and the Peclet number, Pe, is based on the final
equivalent radius, R, of the dendrite envelope

Pe = W—;‘)elgf (43)

A similar expression for the liquid diffusion length results for a cylindrical coordinate
system, which is applicable to the columnar case [39].

It is worth noting that the diffusion length given by Eq.(42) has the property that

D
g <=L (44)
Whe

The equality sign in Eq.(44) corresponds exactly to the analytical result of Rappaz and
Thevoz [35]. More recent analyses of a similar nature have been presented by Nastac and

Stefanescu [65].

4.4 Growth Kinetics of the Dendrite Envelope

As shown in Fig.9, the envelope is a smooth surface connecting both the primary and
secondary dendrite arm tips. Therefore, the envelope velocity, wWpe, can be taken to be
equal to some mean tip velocity. Generally, each tip moves at a different speed depending
on the local solutal undercooling in the extradendritic liquid adjacent to the tip. In particular,
there may be considerable differences in the speeds of the primary and secondary dendrite

arm tips. In spite of this complex situation, it may be assumed that the mean dendrite tip
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velocity and, hence, the envelope velocity can be uniquely related to the average solutal
undercooling in the extradendritic liquid, i.e., Ce - <Cp>. The irregular topography of the
envelope caused by the different speeds of the dendrite tips is accounted for through the use
of the envelope shape factor as described in Section 4.2.2.

Numerous studies have been performed to establish a relation between the dendrite tip
undercooling and its growth velocity, and the detailed derivations can be found in [18].
Physically, the growth model is obtained by considering two phenomena: solute transport
near the tip and tip stability. Assuming no back diffusion in the solid and using the

common marginal stability condition for tip growth proposed by Lipton et al. [66], it can be

shown that
- Dlm(K-l)ée 2
Wne = T PCt (45)
where the tip Peclet number, Pey, is related the dimensionless solutal undercooling, €2:
C. - 1
= CE—.<C.1__>_. (46)
Ce(1-x)

via the solution of the solute diffusion problem near the tip. For diffusion-dominated
growth, the exact solution, called the Ivantsov function, can be written as

Iv(Pep = Pey exp(PepE(Pey) = Q 47)
where E|(Pey) is the exponential integral function. Combining Eqs.(45) and (47) yields a
growth model for diffusion-dominated solidification.

The inclusion of a dendrite tip growth law has an important implication for the present
multiphase model. The interface between the two liquid phases (i.e., the envelope) is no
longer hypothetical but mathematically characterized by the growth law. Hence, it is as
meaningful as the solid-liquid interface, which is mathematically represented by equilibrium

conditions.
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4.5 Limiting Cases and Comparisons

The previous subsections constitute the complete diffusional model for dendritic alloy
solidification. An energy equation is used to calculate the temperature evolution and
distribution and the solute diffusion equations can be integrated to obtain the solid fraction
evolution, which then feeds back into the latent heat term. Because the solute diffusion
model rests on numerous assumptions, it is necessary to first validate the predictions for
certain limiting cases, which is the subject of this subsection. Details of the comparisons
can be found in {40].

As reviewed by Rappaz [4], previous solute diffusion models for dendritic
solidification can be classified as follows: (i) Equilibrium models which do not consider
nucleation and undercooling in the liquid; (ii) Models for columnar growth which
incorporate dendrite tip undercooling; (iii) Models for equiaxed growth focusing on
coupling the growth kinetics of dendrite tips to the evolution of an equiaxed grain. The

following subsections are divided according to this classification.

4.5.1 Complete Solute Mixing in the Liquid. This category of solute diffusion
models essentially aims at investigating the effects of back diffusion in the solid. By
neglecting dendrite tip undercooling, namely assuming complete solute mixing in the inter-
and extradendritic liquid, the only solute diffusion equation of interest is the one for the
solid, Eq.(40). Further restricting attention to a locally parabolic solidification rate, i.e.,

oeg 1
& = 2% (48)

where tf is the local solidification time, the present model admits a closed-form analytical

solution [40]

_ €
- (1+6a)x-1
o=t [ e60-1(1.¢)-(1+6a)x g 49)
O €S6a o

where

34



_ 4Dstf

(50)
2
12

a

is the traditional diffusion Fourier number based on the secondary arm spacing and C, is
the initial composition. For a—e0 and a—0, the well-known Lever rule and Scheil
equation, respectively, can be recovered. For an intermediate o, Fig.14 compares Eq.(49)
with other available microsegregation models. It can be seen that the present model agrees
better with Kobayashi's exact solution [67] than the other analytical models due to Brody
and Flemings [68], Clyne and Kurz [69], and Ohnaka [64]. Available in the literature are
also a number of numerical models that can handle variable thermophysical properties and

coarsening (see [70]).

4.5.2 Columnar Growth with Dendrite Tip Undercooling. At intermediate and
high cooling rates, diffusion in the solid is found to be negligible. However, another effect
begins to influence the relation between the solid fraction and temperature: the dendrite tip
temperature falls significantly below the equilibrium liquidus temperature. Some recent
theoretical studies of the tip undercooling effect have been reported by Flood and Hunt
[36], Giovanola and Kurz [37] for an Ag-Cu alloy, and by Flemings [71] for an Al-Cu
alloy. The latter two studies are based on the "patching" method due to Giovanola and Kurz
[37]. This model divides the mushy zone into two regions, with nonequilibrium growth
allowed only in the tip region and a state of complete solute mixing in the liquid assumed in
the other region. Then, a curve-fitted polynomial and the Scheil equation are utilized for the
solid fraction profiles in the two regions, respectively. The KGT model [72] is used for the
dendrite tip growth and back diffusion in the solid is neglected. Without presenting the
details of the calculations [40], the present model is compared in the following to these and
other studies of columnar solidification. The interdendritic liquid is assumed to be solutally

well mixed.
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To examine the sole effect of dendrite tip undercooling, calculations have been carried
out for two cooling rates of T = 103 and 106 K/s and by setting Ds=0 in the model
equations. The predicted temperature vs. solid fraction curves are plotted in Fig.15 together
with Flemings' results. It can be seen that the two predictions basically produce the same
trend. The temperature undergoes little change during the initial long stage of solidification,
and significantly decreases only during the last short period of solidification. The other
consequence of dendrite tip undercooling is a decrease in the fraction eutectic. It should be
realized that, opposed to the patching method of Giovanola and Kurz [37], a single set of
equations is used in the present model throughout the entire mushy region.

Another numerical study using the present model is conducted for an Ag-15wt% Cu
alloy, again assuming negligible back diffusion in the solid. Calculations have been carried
out using the data from the experiment of Bendersky and Boettinger [73]. The predicted
microsegregation profile is plotted in Fig.16, together with Giovanola and Kurz's result
[37] as well as the experimental data measured by Bendersky and Boettinger [73). It can be
seen that all three results are in good agreement, thus validating the present model in
accounting for the influence of dendrite tip undercooling. Slight differences between the
present results and those from the Giovanola and Kurz model can be observed in both
Figs.15 and 16. They can be attributed to the simplified treatment of the dendrite
morphology in Giovanola and Kurz' patching method [37]. In fact, it can be argued that the
present predictions in Fig.16 are in somewhat better agreement with the experimental data.

In order to predict microsegregation over a wide range of cooling rates, however, the
effects of back diffusion in the solid and dendrite tip undercooling need to be taken into
account simultaneously. Recently, Sarreal and Abbaschian [74] presented a set of
experimental data for an Al-4.9wt% Cu alloy in order to demonstrate the influence of the
cooling rate on microsegregation. Interestingly, they found that the eutectic fraction first
increases as the cooling rate rises up to 187 K/s and then decreases with increasing cooling

rate. This behavior cannot be captured by a solute diffusion model that considers either
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solid diffusion only or dendrite tip undercooling alone, as indicated in Battle and Pehlke
[75]. Since the present model includes both of the above mentioned factors, it can be
expected to be an appropriate theoretical tool for explaining the experimental observation.
Several numerical simulations have been performed for solidification of an Al-4.9wt% Cu
alloy at the cooling rates and growth velocities present in the experiments. In the
calculations, eutectic undercooling was neglected and constant alloy properties were
assumed. Figure 17 compares the predictions with the experimental results of Sarreal and
Abbaschian [74] for the eutectic fraction as a function of the cooling rate. In the figure,
EEmax is the theoretical maximum eutectic fraction as computed from the Scheil equation. It
is found that the agreement between the model predictions and the experimental results is
fairly good, with the relative error ranging from 1.73% to 11.5%. By including eutectic
undercooling and variable alloy properties, Roosz and Exner [76] and Voller and Sundarraj
[77] obtained even better agreement. Nonetheless, the important fact that the eutectic
fraction is reduced at a very high cooling rate is predicted by the present model. This is
known to be due to the effect of dendrite tip undercooling on microsegregation. At low
cooling rates, back diffusion in the solid causes a reduction in the eutectic fraction, while at
high rates, dendrite tip undercooling tends to decrease the eutectic fraction. However, the
two effects are not additive. At low cooling rates, the effect of dendrite tip undercooling
does not exist, while at very high cooling rates, diffusion in the solid phase becomes
negligible due to the short duration of the solidification process.

4.5.3 Equiaxed Growth. The solute diffusion processes occurring in equiaxed
dendritic growth are even more difficult to model, mainly because an equiaxed dendrite is
not fully solid. Several approaches have been reported in the literature. Dustin and Kurz
[33] presumed that a mushy grain has a constant internal solid fraction. As already
mentioned, Rappaz and Thevoz [34,35] were the first to fully account for nucleation and

growth kinetics, and introduced the idea of a spherical grain envelope which separates the
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inter- from the extra-dendritic liquids. The interdendritic liquid was assumed to be solutally
well mixed, and the dynamics of the envelope were determined by the growth kinetics of
the dendrite tips. Both numerical and analytical versions of this solute diffusion model were
formulated.

In order to validate the present model for equiaxed dendritic growth, solidification of an
Al-5wt% Si alloy has been simulated and compared with the results of Rappaz and Thevoz
[34]. Again, the interdendritic liquid is assumed to be solutally well mixed. The simulations
correspond to isothermal solidification of a small sample, where the following energy

equation applies:

A : de dT
Gexty_ = PCT = pAh g + pe g (51)

A series of predicted cooling curves for a cooling rate of 45 K/s and three different final
grain radii is compared against the more exact solution of Rappaz and Thevoz [34], as
shown in Fig.18. The latter was obtained by solving a microscopic partial differential
equation for solute diffusion in the extradendritic liquid by a finite difference technique. It
can be seen that excellent agreement between the two predictions exists, although the
present model utilizes the simpler concept of a diffusion length together with an integral
formulation. The predicted recalescence is typical of equiaxed solidification. The increase in
the temperature at later times is due to the latent heat release being larger than the external
cooling. Rappaz and Thevoz [34] and Thevoz et al. [61] also compare their predictions to a
variety of experiments, including multidimensional castings, and the reader is referred to

the original literature for a more detailed discussion.

4.6 Application to the Prediction of the Columnar-to-Equiaxed Transition
(CET)

Only recently, efforts have been made to theoretically model the CET. Hunt [78] first

developed an analytical model by considering steady state columnar and equiaxed growth.
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The model qualitatively reveals the influences of alloy composition, nuclei density and
cooling rate on the CET. Subsequently, Flood and Hunt [36] extended the work to
dynamically model the CET in a one-dimensional ingot. They incorporated grain nucleation
and growth principles into a heat flow calculation, and simulated the CET as a Stefan-like
discontinuity interface. Although their work significantly advances the prediction of the
CET, it suffers from several limitations. First, solute is not conserved in their model, as
noticed in a number of subsequent investigations [4,37]. This leads to erroneous
predictions of the volume fraction of equiaxed grains whose growth is mainly controlled by
constitutional undercooling, and therefore makes it impossible to capture the CET
accurately. Secondly, their model is a multi-domain formulation in which different
governing equations are applied to the columnar and equiaxed zones. The solution of such
equations requires explicit tracking of the interface separating the two zones and the use of
appropriate matching conditions between the two regions. It is well known that great
difficulties are associated with the numerical implementation of such a model, in particular
in multi-dimensional situations.

Other numerical studies of predicting the grain growth and CET adopt a completely
different approach, namely a probabilistic method based on the Monte-Carlo procedure.
Notable work includes that by Brown and Spittle [79], Zhu and Smith [80], and Rappaz
and Gandin [81]. Capable of producing computed two-dimensional microstructures which
closely resemble those observed in real micrographic cross-sections, these models,
however, either lack a rigorous physical basis or invoke certain simplifications. For
example, the physical mechanisms of nucleation and growth of dendritic grains have not
been properly accounted for in the statistical models by Brown and Spittle [79] and Zhu
and Smith {80]. A uniform temperature field has been assumed and solute diffusion not
considered by Rappaz and Gandin [81].

Comprehensive experiments on the CET have been conducted by Weinberg and

coworkers in laboratory ingots cooled from below for various Sn-Pb alloys [82] and an Al-
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3wt% Cu alloy [25]. The relationship between the casting parameters and the CET position
has been established for these alloys. However, no systematic comparisons between these
experiments and theory have been attempted so far [83].

In this section, selected results of a recent study by Wang and Beckermann [24] are
presented. All results shown are directly based on the multiphase/scale model of Sections
4.1 to 4.4. All thermophysical property data and other conditions can be found in the

original reference.

4.6.1 System Description. The system investigated is shown in Fig.19 and consists,
in the most simple case, of a one-dimensional casting in which mixed columnar and
equiaxed growth occurs. The equiaxed grains compete with the advancing column‘ar grains;
when the equiaxed crystals are small, they are swallowed by the approaching columnar
front and transformed into columnar dendrites. Conversely, if the undercooled zone ahead
of the columnar front is relatively large and the density of crystals high, the equiaxed grains
may have enough time to reach a sufficiently high volume fraction to block the columnar
crystal growth. The latter case results in the CET in the final microstructure of a solidified
material. A criterion for the CET to occur was first proposed by Hunt [78] and later
confirmed by Brown and Spittle [79]. That is, the equiaxed grain volume fraction (gg+&4)
immediately ahead of the columnar front must exceed 0.49 to stop the columnar growth.
The boundary and initial conditions for the energy equation, Eq.(10), and the solute

diffusion model, Eqs.(19-22), can be summarized as follows:
T oT
-ka—; =h(T - Tp) (at the lower wall); 3% = 0 (at the upper wall) (52)

and
att=0, T=T, Ce=<Cp!=Co, <Cs>S = KkCo, €5= €50, £4 =0, €1 = l-£50  (53)
where h is the heat transfer coefficient at the chill wall. The initial temperature, T, is not

necessarily equal to the liquidus temperature corresponding to the initial concentration,
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TL(Co), and their difference, AT, = T, - TL(C,), represents the pouring superheat. The
initial solid fraction &g, is a small positive number to account for the finite size of the nuclei
present in the liquid melt. In the numerical simulations presented below, €4, was chosen to
be small enough that the later predictions are insensitive to €.

As in the comparisons presented in Section 4.5, the interdendritic liquid is assumed to
be solutally well mixed, resulting in certain simplifications in the model equations [24].

Back diffusion in the solid is also neglected (i.e., Dg=0).

4.6.2 Numerical Results. Because all the macroscopic diffusion equations are equally
valid for columnar and equiaxed growth, a fixed grid can be utilized and no internal
matching conditions between the various regions need to be considered. Other numerical
procedures include a two-time-step scheme, inspired by Thevoz et al. [61], and a special
columnar front tracking algorithm [24].

A representative one-dimensional simulation was first carried out for an Al-3wt% Cu
alloy in a one-dimensional mold of 100mm length, and the results are presented in Figs.20
and 21. The conditions are: h=65 W/mZ2K, n=105 m-3 and AT, = 20 K.

Figure 20a shows the calculated cooling curves at five locations between x/L.=0.025
and 0.825 with an interval of 0.2. Negligible bouncing or reheating effects are seen in the
cooling curves near the recalescence stage (see the inset of Fig.20a), although a relatively
coarse grid was used. Significant recalescence is only observed in the first curve for the
location nearest to the chill wall, whereas the other curves exhibit thermal plateaus. It can
be concluded that for the mixed mode of solidification, recalescence is less pronounced
than in purely equiaxed solidification [61]. This is because the cooling curve for mixed
growth embodies features of columnar solidification, namely a temperature plateau in the
cooling curve [36]. The fact that the cooling curves for various modes of solidification are
distinctive in shape has been utilized by Lipton et al. {84] for in situ measurements of the

CET positions in castings.
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The computed solid and grain fractions are displayed in Fig.20b at the same locations
as the cooling curves. Again, the grain fraction is defined as the sum of the solid and
interdendritic liquid volume fractions. This figure clearly shows that the two quantities do
evolve at disparate rates, as mentioned earlier. Hence, a two-time step scheme is necessary
for accurate calculations of both macro- and microscopic features of solidification. In
addition, it is noticed from Fig.20b that the grain fraction at some locations does not reach
the maximum value of unity. This is because complete mixing of solute in the extradendritic
region is reached before the grain envelopes impinge. In other words, the dendrite tips do
not advance further, because undercooling at the tips is no longer significant. The
remaining liquid in the extradendritic region is ultimately solidified during the eutectic
reaction. |

The evolution of the different regions in the ingot is depicted in Fig.21, where the
dashed line denotes the liquidus isotherm corresponding to the initial alloy concentration,
and the solid line stands for the CET interface which divides the mushy zone into the
columnar and equiaxed regions. The final CET position corresponds to the vertical part of
the solid line. Hence, the CET occurs about 650 seconds after the initiation of cooling of
the ingot.

Selected two-dimensional simulations were also performed for the Al-3wt% Cu alloy.
Figures 22a and 22b depict the evolution of the interface between the columnar and
equiaxed zones in 100x100mm square and 50x100mm rectangular castings, respectively.
The left and bottom walls were cooled with a heat transfer coefficient of 65 W/m2K, while
the upper and right boundaries were insulated to represent symmetry conditions. Other
conditions are the same as in the one-dimensional simulation. The predicted CET interfaces
are quite similar to the ones observed in the experiments of Brown and Spittle [85] for the
square geometry, and to the simulation results obtained by Zhu and Smith [80] for the

rectangular geometry.
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4.6.3 Experimental Verification. This section presents some validation of the
present model using the experimental data of Weinberg and coworkers for both Sn-Pb [82]
and Al-Cu [25] alloys. In Weinberg's experiments, the various alloys were poured into a
100mm long cylindrical mold and solidified vertically upward from a water-cooled copper
chill at the bottom. One-dimensional solidification results by avoiding lateral heat losses.
The CET position was observed and measured by sectioning the solidified ingots along the
vertical center plane, and polishing and etching the sectioned surface. Since for both alloys
the solute-rich interdendritic liquid has a higher density than the overlying alloy melt and
the axial temperature gradients are stable, melt convection due to buoyancy forces is
minimal and, thus, the CET data are well suited for comparison with the present model
where convection is omitted. Some uncertainties remain, however, with respéct to the
effects of sedimentation or floating of equiaxed grains due to the density difference between
the solid and liquid phases. The experiments covered a wide range of chill heat transfer
coefficients, pouring superheats, and alloy compositions.

In the absence of a reliable nucleation model, a parametric study was first performed to
investigate the effect of the equiaxed nuclei density on the CET. Figure 23 compares the
model predictions to the Al-3wt% Cu alloy data of Ziv and Weinberg [25]. It can be seen
that for all chill heat transfer coefficients the predicted CET positions agree fairly well with
the experimental data for a nuclei density in the equiaxed zone of 105 m-3. This value was
thus used in all comparisons with the Al-3wt% Cu experiments. A similar procedure for the
Pb-Sn alloy experiments of Mahapatra and Weinberg [82] showed that a single nuclei
density of 107 m-3 resulted in good overall agreement with all 24 experimental runs. The
value of n=107 m"3 (which corresponds to a final equiaxed grain size of about 2.8 mm) is
of a reasonable magnitude, although some variations can be expected for the different
cases. A summary of all comparisons is presented in Fig.24.

Returning to Figure 23, one can also examine the effect of inoculation on the CET. In

the inoculation experiments with h=50 W/m2K [25], it was found that the equiaxed grain
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size decreased from 5.4 to 1 mm by adding 172ppm of TiB3 to the liquid melt. The Imm
grain size corresponds to an equiaxed nuclei density of about 1.9x109 m-3. Figure 23
shows that, at this value of the nuclei density and h=50 W/m2K, a wholly equiaxed
structure is predicted, which agrees with the experimental observations [25]. In fact, Figure
23 indicates that the transition to a wholly equiaxed structure takes place at a nuclei density
of roughly 108 m-3,

The above comparisons show that, given a realistic nucleation model, quantitative
agreement between measured and calculated CET positions can be obtained. More well-
controlled experiments are needed to fully validate the model. Furthermore, melt convection
and crystal multiplication/transport remain to be included for situations where diffusion is

not dominant.



5. CONVECTIVE TRANSPORT IN DENDRITIC ALLOY
SOLIDIFICATION

While the prediction of diffusion-dominated alloy solidification has reached a
considerable level of sophistication in recent years, the inclusion of melt convection and the
transport of solid phases in the form of dendrite fragments and small equiaxed crystals, has
only begun to receive serious research attention. The major challenge lying ahead is the
quantitative modeling of the interactions between the flow and the dendritic microstructure,
leading to the kind of micro/macroscopic predictions discussed in Section 4 for diffusional
transport. Instead of providing a complete account of all studies in this area, the following
subsections focus on several selected issues that are the subject of intensive present
research efforts, but are largely unresolved. The discussion is conveniently divided into
two sections corresponding to columnar solidification with a rigid and stationary solid
phase and equiaxed solidification with melt convection and solid transport. A third
subsection briefly discusses important issues in coupled columnar/equiaxed solidification
with convection. In the following, all volume averaging symbols are omitted, and <¥y>k

is simply denoted by ¥x. The overbar is retained to designate interfacial quantities.

5.1 Columnar Solidification with Stationary Solid

Models of columnar solidification with melt convection and a rigid, stationary solid
phase typically neglect dendrite tip undercooling and calculate microstructural parameters,
such as the dendrite arm spacings "after-the-fact" rather than as an integral partsof the
model. While numerical solutions of the model equations that describe columnar
solidification have illustrated the capabilities of such models to predict the development of
an irregular liquidus front, local remelting of solid, the development of flow channels in the

mushy zone and the establishment of macrosegregation patterns for the solidification of

salt-water solutions [86-88] as well as metal alloys [89-92], few studies have addressed the
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effects of microscopic behaviors on the macroscopic transport phenomena. There are two
important areas where what occurs on a microscopic level influences macroscopic transport
in columnar solidification: the influence of the morphology of the mushy zone on the
resistance it offers to flow, as characterized by the mushy zone permeability, and the effects
of microsegregation on macrosegregation. In addition, most attempts at modeling
convection during columnar solidification have considered only flow driven by the action
of gravity on density gradients caused by temperature and concentration variations in the
melt, i.e., thermosolutal buoyancy. Since the density of the solid and liquid phases is
usually quite different, however, the volume change that occurs upon solidification (i.e.,
solidification shrinkage) also causes fluid motion, and can lead to macrosegregation. While
there are other topics of concern in modeling columnar solidification, these issues have
been the subject of recent research efforts and are discussed in more detail in following

subsections.

5.1.1 Reduced Macroscopic Equations. Before discussing the roles of microscopic
behaviors and solidification shrinkage in macroscopic model predictions, some background
on the assumptions used in deriving the model equations and the physical interpretation of
those equations is necessary. In this subsection, a macroscopic model [93] is described that
is, in essence, a generalization of models used by Bennon and Incropera [86], Beckermann
and Viskanta [87], Voller et al. [88], and others to predict convection and macrosegregation
during the columnar solidification of binary alloys. The model accounts for the presence of
at most three phases: liquid (subscript 1), alpha-phase solid (subscript o) and gamma-phase
solid (subscript ). The macroscopic conservation equations in the model can be directly
obtained from the volume-averaged equations of Table 1, and are summarized in Table 2.
The assumptions made to obtain the equations listed in Table 2 include:
(1) The solid phases are attached to the mold wall and are rigid so that

Va=Vy=0 (54)
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The model is also restricted to creeping flow in the mushy zone and laminar flow in the

bulk liquid regions so that all dispersion fluxes may be neglected.

(2) All of the phases within an averaging volume are in thermal equilibrium, i.e.,
Ta=Ty=T1=T (55)

The justification for this assumption is the same as in Section 4.1, and this enables the

use of the mixture energy equation in Table 2.

(3) As in Section 4.5.1, the liquid within an averaging volume is considered to be
solutally well mixed so that the interfacial average and volume average concentrations are
equal, i.e.,

Ci=Cis (56)
Due to solutal undercooling, this approximation may introduce some error at the dendrite
tips, but is reasonable in the porous dendritic mush. This assumption also makes it
unnecessary to distinguish between inter- and extra-dendritic liquid.

(4) Microscopic species diffusion in the solid phases is assumed to take one of two
limiting cases: complete diffusion, where the interfacial average and volume average
concentrations are equal, i.e.,

G =Cs s=a,y (57)
or no diffusion, where there is a microscopic solute profile in the solid, i.e.,

Cy1 # Cs s=a,y (58)
This covers two important limiting cases of solid microsegregation, and will be
discussed in more detail in Section 5.1.2. -

(5) While all macroscopic solid species fluxes are assumed to be negligible, in order to
predict double-diffusive phenomena in the melt finite-rate macroscopic liquid species
diffusion is included. Only ordinary (Fickian) diffusion is considered.

(6) Thermodynamic equilibrium is assumed to exist at the solid-liquid interfaces so that

the interfacial temperature and concentrations can be related through the phase diagram.
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(7) The phase enthalpies are assumed to vary with both temperature and concentration.
Also, all macroscopic species diffusion terms appearing in the mixture energy equation
are neglected.

(8) Gravity is assumed to be the only body force, and the viscous stresses are assumed
to be proportional to the rates of deformation.

(9) The flow through the porous matrix of columnar dendrites in the mushy zone is
typically very slow so that the dissipative interfacial stress can be modeled using the
mushy zone permeability, K(?), in analogy with Darcy's law. More details regarding the
mushy zone permeability are given in Section 5.1.3.

(10) The phase diffusion coefficients that appear in the conservation equations are not
effective values that are functions of the local microstructure, but are set equal to their
MiCroscopic counterparts.

The assumptions given by equations (2) through (5) are also illustrated in Fig.25.

5.1.2 Microsegregation in the Solid. The first way that microscopic behavior can
affect macroscopic transport is through the influence of solid microsegregation. Since melt
flow can redistribute species segregated on a microscopic scale, accurate modeling of
microsegregation should, in principle, be even more important in the presence of
convection than for purely diffusional transport. Since microsegregation introduces solutal
gradients into the melt and influences the solid fraction evolution in the mushy zone, it can

also affect the fluid flow.

As discussed in Section 4.5.1, the term (SSpSDS/lsl)(—C-Sl - Cs) in the solid species
conservation equations in Table 2 physically represents the transfer of species at the
solid/liquid interface in an averaging volume due to microscopic species concentration
gradients within the solid. Since the quantity V(/g/Ss) can be considered a characteristic

length for the local solid microstructure, and if tf denotes the local solidification time, the
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quantity (SsDg/lsDtf is a dimensionless diffusion time (Fourier number). Note that for a
simple plate-like dendrite geometry and parabolic solidification rate this quantity reduces to

o in Eq.(50). Then, two limiting cases of microscopic solid species diffusion can be

considered [18]:
3Ds 551 (59)
sl
or
3Ds e 1 (60)
sl

Equation (59) implies that the time required for species diffusion in the solid on a
microscopic scale is short in comparison with the local solidification time. Then,
examination of the solid species conservation equations in Table 2 reveals that tﬁc volume
average solid concentrations will be equal to the average interfacial solid concentrations,
i.e., the solid phases will be solutally well mixed and Eq.(57) will be satisfied.
Conversely, Eq.(60) means that the time required for microscopic species diffusion in the
solid is much longer than the local solidification time, and the solid species conservation
equations show that there will be a microscopic concentration profile within the solid in an
averaging volume as noted by Eq.(58). In other words, the solid will have "layers" of
different compositions, with the concentration of each layer uniquely related to the
concentration of the liquid from which it formed. In the absence of macroscopic advection
and diffusion of solute, these two cases reduce to the lever rule and Scheil model [3,94]
that have been used by metallurgists for many years. .

In the majority of numerical simulations of columnar solidification, either Eq.(57) or
(58) 1s chosen as the model for microsegregation. Only two studies have directly compared
macrosegregation patterns for these two limiting cases. By simulating the solidification of
an NH4C1-H20 mixture, Voller et al. [88] determined that the general behavior for the two
cases was qualitatively similar, with the predicted macrosegregation for the case of no

solute diffusion slightly worse than that for complete solute diffusion. Schneider and
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Beckermann [93] simulated the solidification of a Pb-20 wt% Sn alloy using the domain
and boundary conditions shown in Figure 25. The final macrosegregation patterns for the
two limiting cases of microsegregation again produced very similar macrosegregation
patterns, as shown in Figures 26a and 26b. In contrast with Voller et al. [88] the
assumption of complete diffusion led to slightly more severe macrosegregation. For the
diffusion-dominated solidification of a Pb-Sn alloy, the movement of the liquidus isotherm
for the two cases was also shown to differ only slightly [93,96]. However, those results
also indicate that the volume fraction of eutectic in the final solid can be quite different for
the two cases [96]. The results of Schneider and Beckermann [93], as illustrated by the
final eutectic fraction distributions in Figs.26¢ and 26d, indicate similar behavior when melt
convection is considered. Figure 26¢c shows that when no solid species diffusion is
assumed a large portion of eutectic is formed throughout the casting, with more eutectic in
regions that are more severely segregated. Fig.26d shows that when complete solid species
diffusion is assumed, a large portion of the casting contains little or no eutectic. These
results indicate that it may not be necessary to use more complicated microsegregation
models (e.g., including finite rate solute diffusion in the solid microscopically or more
carefully incorporating coarsening effects) if one is solely interested in predicting
macrosegregation. However, such complicated microsegregation models are probably
necessary to accurately predict eutectic formation.

Another issue closely related to microsegregation is how to model the local remelting of
some of the solid that has formed. Since the solid is assumed to be solutally well miz(ed on
a microscopic scale when using Eq.(57), this presents no difficulty. When using Eq.(58),
however, the presence of a microscopic concentration profile in the solid creates problems
during remelting (94,96]. In this case, the manner in which the average solid concentration
varies during remelting depends on the concentration of the solid that is melting. Clearly,

careful experimentation is necessary to obtain accurate and realistic models of remelting.
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5.1.3 Mushy Zone Permeability. The permeability of columnar dendritic mushy
zones has been measured in several studies (Poirier [97] and Liu et al. [98] provide
summaries), and can be correlated as a function of the solid volume fraction as well as the
primary and/or secondary dendrite arm spacings. The anisotropic structure of the columnar
dendrites also causes the permeability along the primary dendrite arms and perpendicular to
the primary arms to be unequal [97]. Unfortunately, experimental measurement of the
permeability is only practical for a limited range of liquid fractions (from 0.15 to 0.65). A
promising solution to this problem has been presented by Ganesan et al. [99], where
descriptions of real microstructures taken from quenched solidification experiments were
combined with numerical simulations of the microscopic flow along primary dendrite arms
for liquid fractions above 0.65. The results showed that the permeability could be described
well by analytical solutions for the flow through arrays of cylinders. Further complications
arise when the velocities in the mushy zone become high, and the assumption of creeping
flow breaks down. Two models have been proposed where higher order friction terms are
used to account for this effect [87,32], although at the present time there is not sufficient
experimental evidence to justify the inclusion of such terms in modeling the flow through
mushy zones.

The use of advanced permeability models in columnar solidification simulations has
been relatively limited. Neglecting the anisotropy of the mushy zone was shown to have an
effect on the convective flow during the solidification of an NH4C1-H2O solution
[100,101]. This, in turn, led to significant differences in the prediction of the growth of
double diffusive layers, remelting of solid and macrosegregation [101]. Felicelli et al. [90)
used correlations for measured perpendicular and parallel permeabilities at low liquid
fractions and analytical permeability relations for the flow through arrays of cylinders at
high liquid fractions, but did not examine the effects of using these permeability relations.

To determine the influence of permeability relations on the flow and macrosegregation

during solidification simulations, Schneider and Beckermann [93] examined the use of two
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different permeability models. In the first case anisotropic permeability relations like those
of Felicelli et al. [90] were used, while in the second case an isotropic permeability relation,
based on the Blake-Kozeny model and used extensively in solidification simulations, was
utilized. In the anisotropic case, the dendrites were assumed to grow in a direction opposite
the flow of heat. Figure 27 shows that the anisotropic permeabilities jump by nearly a
factor of 100 at the transition point between the experimental and analytical permeability
expressions. The figure also shows that the permeability parallel to the primary arms is
always larger than that perpendicular to the arms, although the difference is a factor of
around 2 over a large range of liquid fractions. The largest difference between the isotropic
and anisotropic permeabilities is at high liquid fractions. Since the initiation of the
formation of channels in the mushy zone occurs in regions where the liquid fraction is
high, these difference are significant. The large difference between the permeability parallel
to the primary arms and the isotropic permeability at low liquid fractions is not of critical
importance, since the flow velocities in regions of low liquid fractions are comparatively
small. To illustrate the differences in the macroscopic model predictions when using these
different permeability relations, Fig.28 shows predicted velocity and macrosegregation
distributions after 250 seconds for the solidification of a Pb-20 wt% Sn alloy with the
domain and boundary conditions given in Fig.25. Figure 28a shows that due to the jump
between the experimental and analytical anisotropic permeabilities, flow in regions
characterized by a liquid fraction of greater than 0.7 is much stronger than in regions of
smaller liquid fractions. Obviously, such a jump is not physically realistic and illustrates the
need for continued work to develop permeability relations valid for all liquid fractions.
Examining Fig.28, the most noticeable difference in the solid fraction and
macrosegregation distributions predicted using the two permeability models is in the
number, length and orientation of the channels formed in the mushy zone. These channels
are preferred flow paths for the solutal buoyancy driven interdendritic flow. The presence

of tin-rich interdendritic liquid in the channels serves to lower the liquidus temperature,
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resulting in both local remelting and the delayed formation of solid. Many short channels
are predicted with the isotropic permeability model because at very high liquid fractions
(i.e., at the edge of the mushy zone) the resistance to flow is small (in comparison with the
anisotropic case) due to the high permeability. Therefore, it is easy for flow channels to
begin to form. As the liquid fraction decreases slightly, the permeability decreases rapidly,
it becomes more difficult for flow to "feed" the channel, and its development is slowed or
stopped. Figure 28b confirms this behavior since near the edge of the mushy zone there
appears to be flow into and out of the mushy zone via the many channels while in areas of
lower liquid fraction the flow is comparatively slow and mostly upward. In the anisotropic
case, the relatively high permeability over a range of liquid fractions provides less
resistance to the upward, solutally driven flow in the mushy zone. Figure 28a shows that
this has resulted in long, vertically oriented channels.

Since the uncertainty in experimentally measured permeabilities is large, and especially
since no experimental measurements have been made for high liquid fractions, these results
show a definite need for further investigation into the permeability of mushy zones.
Furthermore, the results suggest information on the mushy zone permeability could be
backed out from solidification experiments. For instance, one could measure the length and
orientation of the channels in a solidified sample, and then use model predictions to
determine what type of permeability (e.g., degree of anisotropy, relative magnitude, etc.) is
necessary to reproduce similar channels. Another important issue that has remained nearly
unexplored is the three-dimensional nature of the channels [92]. It is unclear whether two-

dimensional simulations can accurately describe such an inherently three-dimensional

process.

5.1.4 Shrinkage Driven Flow. The densities of the solid and liquid phases of an
alloy will be unequal as well as functions of both temperature and concentration. Hence,

bulk liquid motion in the melt is necessary to account for the volume contraction, or
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shrinkage, that accompanies solid/liquid phase change. Typically, the density of the solid
phase is larger than that of the liquid and it becomes necessary to "feed" the volume
shrinkage. In the foundry, this is accomplished by attaching risers to the casting, much like
the upper-right portion of the domain shown in Fig.25. Since this shrinkage flow is
towards the cooled boundaries, it redistributes any rejected solute in the mushy zone and
forms a positively segregated region near these boundaries, termed inverse segregation.

Including contraction driven flow, in addition to buoyancy driven flow, in single-
domain alloy solidification simulations has also received attention recently. Chiang and Tsai
[102,103] investigated flow patterns caused by shrinkage driven flow, as well as the
interaction of buoyancy and shrinkage driven flow during the solidification of a 1% Cr-
steel. However, species conservation was not considered and the solid volume fraction in
the mushy zone was assumed to vary linearly with temperature. Tsai and co-workers [104-
107] obtained good agreement between predicted and measured inverse segregation profiles
for unidirectionally solidified aluminum-copper alloys. Since those studies focused on the
upward solidification of an Al-4.1 wt% Cu alloy, where the heavier copper is rejected in
the mushy zone, stable thermal and solutal gradients reduced thermosolutal buoyancy
driven flow so that the segregation was primarily due to contraction driven flow.
Therefore, the combined effects of natural convection and contraction flow on
macrosegregation were not investigated. Xu and Li {108,109] solved the complete set of
conservation equations with both buoyancy and contraction driven flow for the
solidification of an Al-Cu alloy. The computational grid used in the simulations, however,
was too coarse to capture double-diffusive flows and local remelting of solid. While no
effort was made to examine the effects of the combined flow on the final macrosegregation
patterns, good agreement with experimental results was obtained [110].

The model equations summarized in Table 2 are also applicable when the solid and
liquid densities are unequal. Schneider and Beckermann [93] have included shrinkage

driven flow, in addition to buoyancy driven flow, in their simulation of the solidification of
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a Pb-20 wt% Sn alloy. The results showed that shrinkage driven flow was most important
during the latter stages of solidification when buoyancy driven flow has been damped out.
Figure 29 shows the shrinkage dominated velocity fields near the end of solidification for
the two limiting cases of microsegregation discussed in Section 5.1.2. This figure also
illustrates the coupling of the prediction of shrinkage driven flow with the choice of
microsegregation model. Close comparison of Figures 29a and 29b shows that the
magnitude of the flow (especially in the riser) is slightly larger in Fig.29b, where complete
diffusion in the solid is assumed. This is due to the fact that in this case mostly primary-
phase solid is forming while in the case where no solid diffusion is assumed eutectic is
forming. Since the eutectic density is considerably less than that of the primary-phase solid,
more flow is needed to feed the solidification shrinkage. -
Schneider and Beckermann [93] also observed an interesting interplay between
shrinkage driven flow and macroscopic species diffusion in the liquid phase. Figure 30
shows inverse segregation profiles for the unidirectional solidification of a Pb-20 wt% Sn
alloy with no buoyancy driven flow. Previous investigations of contraction driven flow and
macrosegregation have shown only positive (inverse) segregation near the cooled boundary
[104-107]. Figure 30b also shows this inverse segregation, except when the solid and
liquid densities are equal (i.e., no flow) where there is a nearly uniform mixture
concentration across most of the casting. Figure 30a, however, shows that when species
diffusion in the liquid is considered, there is a small negatively segregated region very near
the chill that is not present when species diffusion in the liquid is neglected. The cause of
this behavior is diffusion of species away from the wall due to the concentration gradient in

the liquid formed by the rejection of tin into the liquid during solidification.

5.2 Equiaxed Solidification with Melt Convection and Solid Transport

A relative new topic is the modeling of combined liquid and solid convection in alloy

solidification, as may be present in equiaxed growth. Several studies have addressed this
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problem by using averaged mixture equations and neglecting undercooling and grain
growth kinetics. Because only a single (mixture) momentum equation is solved, some a
priori assumption must be made about the relationship between the liquid and solid
velocities. Voller et al. [88] investigated the limiting case where the solid and liquid
velocities are equal, which is valid for a highly dispersed solid phase. The viscosity of the
mixture was enhanced with increasing solid fraction to simulate the formation of a coherent
and rigid solid structure. When compared to a fully columnar structure, a more uniform
macrosegregation pattern was predicted. A hybrid model was developed by Oldenburg and
Spera [111], where for a solid fraction below 0.5, the equal phase velocity/enhanced
viscosity concept was utilized, while for €5 above 0.5 a zero solid velocity model was used.
» The transition was accomplished through the use of certain switching functions. Flood et
al. [112] and Voller [113], on the other hand, introduced the concept of a consolidation
factor that specifies the relationship between the liquid and solid velocities. This factor is a
simple linear function of the solid fraction and varies from unity for £g—0 (equal phase
velocities) to zero at some given value of € corresponding to a stationary solid. Prescott et
al. [114] switched from a zero solid velocity model with melt flow to an equal phase
velocity model (with the viscosity equal to that of the liquid) for solid fractions below 0.01.
In order to model recalescence, they introduced a solid fraction model that accounts for
undercooling by specifying a certain decay rate of the undercooling from a maximum value.
The undercooling model was calibrated using experimental data and produced fair
agreement with temperature measurements for solidification of a Pb-Sn alloy. In general,
the validity of the previous models cannot be established, due to a lack of suitable
experimental data.

A different approach to the modeling of equiaxed solidification is provided by the use
of a so-called two-phase model [31,115,116]. Separate volume averaged conservation
equations are utilized for the solid and liquid phases. Therefore, no assumption about the

relationship between the liquid and solid velocities needs to be made, and phenomena such
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as floating or settling of free solid grains can be modeled. In addition, the two-phase model
distinguishes between the interfacial and bulk concentrations and temperatures, allowing
for the prediction of liquid undercooling, microsegregation and other effects on a
microscopic scale. Another key ingredient is the use of a transport equation for the number
density of grains, which allows for the inclusion of nucleation and the calculation of the
local dimension of grains [31]. Prakash [115,116] neglected the size influence of the grains
on the transport and solidification phenomena. Beckermann and Ni [117,118] presented
results for the macrosegregation pattern and final grain size distribution in equiaxed
solidification of an Al-Cu alloy.

Most recently, Wang [119] introduced a multiphase model of equiaxed solidification
that is patterned after the multi-phase/-scale approach outlined in Section 4, but includes
melt convection and solid transport. Results were obtained for a number of cases involving
equiaxed solidification of an Al-Cu alloy, and the model was partially validated against
experiments using the transparent NH4Cl-H20 analogue alloy. In the following
subsections, this model is presented and the critical model assumptions are discussed.
Some of the work is of a rather preliminary nature, but the discussion will allow for the

identification of future research needs.

5.2.1 Reduced Macroscopic Equations. As in Section 4, the system is assumed to
be occupied by three phases: the solid, and the interdendritic and extradendritic liquids,
which are separated by the dendrite envelope. Each of the three phases in V, may have a
different velocity, concentration, and temperature. Again, the solid/interdendritic interface
1s characterized by phase change, whereas the relative envelope motion is governed by
dendrite tip growth. The following assumptions are introduced:

(1) Local mechanical equilibrium exists, i.e., ps = pd = p1 = p.

(2) The momentum exchange due to interfacial movement is neglected.
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(3) A certain flow partitioning between the inter- and extra-dendritic regions is
assumed. As schematically shown in Fig.31, the liquid may flow either through the
inter- or the extra-dendritic region. The relative portions can be quantified by

introducing a flow partition tensor, ky, which is defined as the ratio of the liquid mass

flux through the porous dendrites to the total liquid mass flux; i.c.,

€4Pd(Vd - Vs) = Ky EFPF(Vf - V) 61)
and
EIPI(V] - V) = (1 - Ky)erpe(ve - vg) (62)

where g€fand vy stand for the total liquid fraction, consisting of both the interdendritic
and extradendritic phases, and the mixture velocity vector for both phases, respectively:
€f=€q + €], and EgPfvf = €4pdvd + €1p1v1. Note that when ky=pgyeq/(pfef), a uniform
flow distribution results; i.e., vq = vj = v. The coefficient Ky is also called the fluid
collection efficiency of porous aggregates in chemical engineering [120]. A correlation
for xy is developed in a later section. The concept of flow partitioning between the
inter- and extra-dendritic regions is introduced to simplify the solution of the
momentum equations in the multiphase model. Once ky is calculated, only the
momentum equation for the total liquid phase needs to be solved, and the individual
liquid velocity fields, v4 and v), can be algebraically obtained from Eqs.(61) and (62).
(4) Local thermal equilibrium exists, i.e., Tx = Tkj = T. The justification of this
assumption is the same as in Section 5.1.

(5) The interdendritic liquid is well mixed so that Eds = E(u = (—jld =Cyg= (—Ze. The
validity of this assumption has been discussed in Section 4.

(6) The dendrite envelope is spherical.

(7) Thermophysical properties are the same for the interdendritic and extradendritic
liquid phases.

(8) All dispersive fluxes are neglected.
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As discussed in Assumption 3, only the solid and the total liquid phases require
principal consideration. The distinction between the variables pertinent to the inter- and
extra-dendritic liquids can be made algebraically after the primary variables pertinent to the
total liquid phase (f) are obtained. These primary variables pertinent to the total liquid are

defined by the rule-of-mixtures, i.e.,

volume fraction Ef=€q + € (63)
density PFEf = PdEd + PIE| (64)
viscosity PLEtH; = Pacatly + Pieiky (65)
mass diffusivity peD; = pgeaDy + pieiD; (66)
thermal conductivity ~ egk; = egk + 1k (67
specific heat PLECE = PdEdCd + PIEIC] (68)
concentration pefCr = pgegCq + p1€1C1 (69)
velocity PIEFVE = PdEQVd + PIEIVI (70)

With the assumptions stated above, a reduced set of model equations can be derived
from the general formulation presented in Table 1. These equations are summarized in
Table 3. Several observations on the equations listed in Table 3 are made in the following.
A. Remarks on the Model Equations

First, the phase change rate I's, a critical parameter in the solidification model, is
determined from the interfacial species balance listed in Table 3. Physically, this equation
implies that the species flux rejected into the interdendritic liquid due to phase change
(LHS) is either diffused into the solid and extradendritic liquid through intetphase
exchanges within the control volume (the 1st and 2nd terms on the RHS), or stored in the
interdendritic region (3rd term on the RHS), or advected and diffused out of the control
volume (4th and 5th terms on the RHS).

Secondly, the momentum equation for phase (f) is obtained by summing up the
momentum conservation equations for phases (d) and (1) as listed in Table 1. The viscous

terms are linear so that they are additive, whereas the summation of the nonlinear advective
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terms results in an additional term (the last term on the RHS), where 7y is called the

momentum dispersion coefficient and is given by

2 _ 2
y=1 -pm["” 5 (oK) ] 1)
PdEd pI€1

When ky=pg€d/pses (i.€., uniform flow through the inter- and extra-dendritic regions), y=0
so that the last term in the momentum equation for phase (f) vanishes. This is why v is
called the dispersion coefficient.

A similar term also arises in the species conservation equation for the total liquid phase
of Table 3.
B. Secondary Variables

The model equations listed in Table 3 constitute a complete mathematical formulation
for eight primary variables: €, I, vg, vy, p, Cs, Cr and T, while the total liquid fraction,
gf, can be obtained from the constraint: eg+€r=1. All quantities pertinent to the interdendritic
and extradendritic liquid phases are classified as secondary variables whose determination
from the above primary variables is explained below.

To distinguish the interdendritic and extradendritic liquid fractions from the total liquid

fraction €f, one can resort to the following mass conservation equation for the interdendritic

liquid phase:

%(Pdﬁd) + V-(pgegva) =Te - I's (72)
where I is related to the growth velocity of the dendrite envelope:
e =SePl Wne - (73)
Hence, the term [ can be calculated from the growth model for the dendrite envelope,
which is provided in Section 5.2.3. Once g4 is obtained, the extradendritic liquid fraction is
simply equal to (g5 - £9).
By definition, the extradendritic liquid concentration can be calculated, once Cg is

available, from
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C1 = (peeeCs - paea Cell(pie)) (74)

where the relation Cy= Ee has been used due to the assumption that the interdendritic liquid
is well mixed, namely Assumption 5.
Likewise, the liquid velocities in the inter- and extra-dendritic regions are obtained,

respectively, from the definition of the flow partition coefficient:

va=vs + ky 2L (vp - vy (75)
PdEd
vi = vs + (1) P (vg - vg) (76)
PI&l

in which xy is calculated as shown in Section 5.2.4.

The above auxiliary relations for calculating the secondary variables from the primary
variables are also summarized in Table 3. To complete the mathematical system,
supplementary relations are, however, needed for the growth velocity of dendrite envelope
Wne, the solid/liquid interfacial drag, Mg, the flow partition coefficient xy, the interfacial
diffusion lengths, /54 and /|4, and the macroscopic transport properties as well. These
additional inputs to the multiphase model are provided in the following subsections. The
interfacial area concentrations, S and Se, are given by the same morphological relations as

those derived in Section 4.2.

5.2.2 Grain Nucleation. As an important microstructural parameter, the grain density
is needed for the evaluation of the envelope area concentration, Se ( see Section 4.2). Due
to solid motion, this grain density, n, is not only determined by nucleation mechanisms but
also modified by the flow field during solidification, according to the following

conservation equation [31]:
on .
5t V-(vgn) = 1 77

where the second term on the LHS is the flux of grains due to a finite solid velocity, vs.

The term n is the net nucleation rate accounting for both the birth and death of grains due to
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heterogeneous nucleation, remelting, dendrite arm pinch-off, agglomeration and other
effects. Although a number of semi-empirical nucleation models are available, they do not
explicitly account for fragmentation and agglomeration effects in the presence of
convection. The realistic modeling of grain structure formation on the macroscopic scale
will largely depend on resolving these issues. Careful experimentation coupled with
solutions of the present model equations may help in this respect. It is important to realize
that for v¢#0 the measured local grain density in a solidified structure has little in common
with the number of grains that nucleated at that same location.

At the present time, the simplest nucleation model, namely the instantaneous nucleation
model proposed by Stefanescu et al. [62] may be used, i.e. Eq.(34). However, due to the
transport of grains, several complications arise. It is assumed that nucleation can only occur
if the local grain density in a control volume before nucleation is equal to zero. This implies
that no new grains will nucleate in the immediate neighborhood of existing grains that may
have been transported into the control volume. In the presence of solid movement, grains
may be advected into regions of higher temperature and remelt to a sufficiently small
diameter dg;. In this case, death of the grains takes place, and the present nucleation model
instantaneously resets the local grain density to zero. The control volume in question is then
allowed to re-nucleate later when the conditions are right. Thus, grains may exist in regions

of superheated melt as long as their diameter is above dg;.

5.2.3 Grain Envelope Growth. For convection-dominated dendrite tip growth: there
is ample experimental evidence showing that both the stability criterion and the species
gradients are affected by the flow field around the dendrite tips [121], and the diffusional
model presented in Section 4.4 is not applicable. A reliable and accurate model accounting
for the convection effects is, however, not yet available. To a first approximation, one can
assume a negligible influence of convection on the stability criterion, and thus the focus can

be placed on the fluid flow effect on the species transport field around the dendrite tips.
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Considerable research has been conducted in the literature in order to find analytical
solutions of the species transport problem around dendrite tips in the presence of
convection. A summary has been given by Ananth and Gill [122]. It was found that the
Stokes approximation of the Navier-Stokes equations for convection in a subcooled melt
yields an exact solution for shape preserving growth of a parabolic dendrite. The solution
was also found to be in good agreement with the available experimental data of Huang and
Glicksman [123]. In terms of the tip Peclet number Pe; and the dimensionless undercooling

QQ, this solution can be written as

n
= expl- [ (fM)dn]
Q= ZPCt ( l
J

dn) @8

n

where the function f(n) is given by

2Pe
- 2 )
fm) = 2Pe; 12 + E1[(Pew + 2Pe)/Sc]

[n2QInn-1)+1] (79)

and the ambient Peclet number is based on the relative velocity between the liquid and the
solid dendrite; i.e.,
Peo = lv] - vgl RyDj (80)
When Pe..=0, which implies no convection, Eq.(80) yields f(n)=2Pem?2 and Eq.(78)
reduces to the Ivantsov solution for pure diffusion as given in Eq.(47).
The solution of Eqs.(78-79) together with Eq.(45) provides a first-order approximation
for convection-dominated dendrite tip growth. It should, however, be cautioned that much
additional research remains to verify the applicability of this dendrite tip growth law in the

presence of convection.

5.2.4 Solid/Liquid Interfacial Drag. The dissipative interfacial stress in a
multiparticle system has traditionally been modeled using various approaches. For high

solid fractions (i.e., the packed bed regime), the porous medium approach is often adopted
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(see also Section 5.1), with the permeability representing a key parameter [124, 3]; while at
low solid fractions (i.e., the free particle regime), the submerged object model is more
frequently used in which the drag coefficient is important [125]. Recently, both approaches
have been unified by Wang et al. [126] for the multiparticle system of equiaxed
solidification, and a general correlation (valid for all solid fractions ranging from zero to

unity) for the dissipative interfacial stress, M(si, on the solid crystals has been obtained; i.e.,

M= e B2 ety - vy (81)

¢

where B is a dimensionless parameter which is only a function of the particle volume

fraction and its morphology and Re is the envelope radius. The expression for B is given by

Ba
- (82)
[(1 - ep™ + (Ba/Pp)2n]1/2n
where
3V5 Ss
- 83
Pa (1- Esi)3/2 OeSe ©
9 2 +4/3n5 1 2B3(1-tank By/Bg) |2

Br=45(1 - ep) 5 < 3 (84)

2-3n +3n° - 2n° Cp(de) 2] + 3(1 - tanh Pa/Bq)
n =0.176log B4 + 0.275 (85)

The function Cp(¢e) accounts for the effect of an aspherical dendrite envelope, with ¢,
being the sphericity of the dendrite envelope [39,127]. The following expression for Cp(de)
has been proposed by Wang et al. [126]:

¢§ for 0.7>¢1>0.0
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Cp(de) = (86)

1.26/0g 10(%) for 1>€1>0.7

While other details on the drag model are available elsewhere [126), several salient

features of the model are outlined here. First, note that this drag model accounts for the



multiple length scales present in a dendritic structure, namely Sgand S (or Re). Secondly,
the drag model encompasses many important limiting cases, which include the single
equiaxed dendrite [59,127], and packed beds of impermeable and permeable spheres.
Thirdly, the model has been validated against various experimental data available in the
literature for both globular and dendritic equiaxed crystals [126]. In particular, it was found
that this model improves the prediction of permeabilities of equiaxed dendritic structures
due to its explicit consideration of multiple length scales. For spherical solid particles, this
drag model reduces identically to the well known Stokes law for the drag coefficient in the
free particle regime [125], while it coincides with the Kozeny-Carman permeability relation

in the packed bed regime.

5.2.5 Flow Partitioning between Inter- and Extra-dendritic Regions. In
equiaxed solidification, it can be assumed that the flow partition coefficient is isotropic, so
that only a single value of Ky is required. It has been shown by Wang et al. [126] that

Ky = (1 - eD(B/By)? 87)
where B and Bq are given by Eqs.(82) and (83). Figure 32 illustrates the effects of the
extradendritic liquid fraction, €}, and internal solid fraction, &; (i.e., the ratio of the solid
fraction to the grain fraction), on the flow partition coefficient in an equiaxed dendritic
system with Sg/Se=0.1. As can be seen, the portion of the flow through the dendrites
approaches zero in the free particle regime (i.e. higher €)). On the other hand, in the packed
bed regime, the flow partition coefficient quickly increases as € decreases and reaches

unity at =0, at which point all flow must be through the interdendritic spaces.

$.2.6 Interfacial Mass Transfer. The solid diffusion length /g4 is the same as in the
absence of convection, and thus Eq.(40) of Section 4.3 can be used. However, the liquid

diffusion length ahead of the dendrite envelope, /|4, needs to be modified to reflect the
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effects of flow. This can be accomplished through the use of the following correlation

[119]:

% _ Ce 173 113

L= 2+ 0.865(‘;l ) Pe, (88)
where

glvy - vel d

Pee ='—'—Dl—s—e (89)

and
2 + L)
Ce (90)

231813 + 3(1-e)5B -2(1-¢))?
This correlation is based on the momentum-mass transfer analogy, and is derived along the
same lines as the interfacial drag expressions given by Eqs.(88-90). A comparisof; between
this correlation and Agarwal's formula [128], which was employed previously by Ni and
Beckermann [117], indicated a discrepancy of less than 20 percent for all solid fractions
[119]. In addition, it should be mentioned that the correlation given by Egs.(88-90)
neglects the effect of interfacial movement and does not reduce to Eq.(42) of Section 4.3 in
the limit of Peg=0. This may be justified by the fact that in the presence of convection, the
convection effect overrides that of interfacial movement in determining mass transfer rates.
Experimental work is underway to verify the above correlation for equiaxed dendritic

solidification [129].

$.2.7 Macroscopic Transport Properties. The effective macroscopic viscosities u:
and u; represent the rheological behavior of a multiphase mixture. They are dependent on
the viscous properties and deformations of the phases, the flow field, and the distribution
and geometry of the dispersed or suspended phase. To a first approximation, the liquid

macroscopic viscosity can be taken to be equal to its microscopic counterpart; i.e.,

*

T 2
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In modeling of the solid macroscopic viscosity, the packing limit must be taken into
account when the grains impinge upon each other (i.e., when eg=z-:;), and form a coherent
and rigid solid structure. In this limit, u: must approach an infinite value so that the
macroscopic velocity gradients of the solid phase vanish. If the rigid solid is fixed to a
wall, the solid velocity will then be uniformly equal to the velocity of the wall (which may
be zero).

In the other extreme where £,—0, the seminal theory of Einstein predicts that u:=3.5u1
[130]. In solidification systems where the grain fraction may vary anywhere from zero to
unity, a smooth transition between these two limits is necessary. Ni and Beckermann [117]

proposed the use of the Krieger model [131], which results in the following expression for

*

H:
n= 1 - egrey 255 - (1 - ep)] 92)
g

Note that the right hand side of Eq.(92) reduces to 3.5 y; for £¢—0 and to an infinite value
for egZecg. It should also be emphasized that for dendritic structures, the solid viscosity is
not directly dependent on the solid fraction but rather on the grain fraction. In other words,
as soon as the grains reach the packing limit (EZ is about 0.6), the solid structure becomes
rigid, even though the solid fraction may be much lower than ecg. There has been ample
experimental evidence to support this hypothesis. For example, experimental data for
different alloys [71,132] indicate that the packing limit can be reached at solid fractions
between 0.1 and 0.3 in a large-grained casting where the grain fraction is much higher than
the solid fraction. In contrast, in well-grain-refined castings, packing of the crystals was
found to occur at much higher solid fractions, between 0.5 and 0.65. This is because the
grain fraction is nearly equal to the solid fraction for small grains. Again, careful
experimentation is needed to verify the use of Eq.(92).

As a first approximation, the macroscopic thermal conductivity and mass diffusivity are

taken to be equal to their microscopic counterparts:
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k. =kk:; D, =Dk (93)

More discussion on these approximations can be found in Beckermann and Viskanta (8].

5.2.8 Application to Solidification of an Al-4wt% Cu Alloy. Illustrative
numerical results have recently been reported by Wang and Beckermann [41] for a physical
system consisting of a two-dimensional rectangular cavity, as shown in Fig.33. The left
vertical wall is subject to convective cooling, while all other walls are adiabatic. The
thermal conditions fall roughly into the range of equiaxed solidification according to the
diagram of Kurz and Fisher [18]. The melt has an initial temperature of 930 K (10 K
superheat) and initial concentration of 4 weight percent of cbpper in aluminum. In the Al-
Cu system, the melt density increases with increasing copper concentration and decreasing
temperature, so that the thermal and solutal buoyancy forces in and near the mushy zone
augment each other. The solid density is generally greater than the liquid density [133].
Hence, crystal sedimentation is expected during solidification. The crystals may experience
partial slip at the walls if the diameter of the grains is larger than the length scale of the
surface roughness. To a first approximation, this effect may be modeled by the use of the

following boundary condition [134]:

vs)thw = -Ap a(av,f)‘ b (94)

The mean distance between particles, lp, can be estimated from ([135])

S
Ap = NI (95)

g
For a small grain diameter, de, the slip coefficient Ap approaches zero so that a no-slip
condition for the grains results. Apparently, the issue of adhesion/separation of equiaxed
grains at mold walls deserves further research attention. Other details of the numerical

implementation may be found in Wang and Beckermann [41].
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Representative results are shown in Fig.34 (at t=50 s) for a simulation where the nuclei
density, no, in the nucleation law, Eq.(34), was arbitrarily set to 109 m-3. The flow field
(Fig.34a) indicates a strong downflow adjacent to the cold, left wall. This flow is not only
driven by thermosolutal buoyancy forces, but also by the sedimentation of the solid grains.
The relatively small crystals, nucleated near the wall exert a large interfacial drag on the
liquid and "pull" it downward. Convection driven by sedimentation has been little
researched. A crystal sediment bed can be observed in the bottom fourth of the cavity. The
coherent and dense dendrite network in this bed forces the majority of the flow to bypass it.
Above the packed bed, a mixture of solid and liquid flows simultaneously. An almost
solid-free liquid region exists only in the upper one-third of the cavity, except for a narrow
layer on the left side. The mixture concentration distribution (Fig.34b) shows that the
relative motion between the liquid and solid phases causes negative segregation in the
regions of higher solid fraction. The negative segregation is strongest at the bottom where
the solute-poor crystals have settled. The isotherm plot in Fig.34c reveals that the lower
right corner is as warm as the upper portion of the cavity. This is a consequence of the
crystals that have settled there and are releasing a large amount of latent heat. The relative
velocity vectors in Fig.34d are defined as (vg - vg), and further illustrate the movement of
the solid relative to the liquid. Above the packed bed, the relative velocity vectors are
upwards, implying that the downward component of the solid velocity is larger than the
one of the liquid; this is a direct evidence of sedimentation. In the packed bed region, on the
other hand, the solid velocity vanishes (vs=0), so that the relative velocity vectors represent
the liquid velocity only. In the upper one-third of the cavity, the nuclei are so small that the
relative velocity vanishes.

The motion of the grains is illustrated in more detail in Fig.35. As already mentioned,
the local grain density is not only determined by the nucleation rate, but is also influenced
by the solid transport during solidification. It can be seen from Fig.35a that initially a

stream of highly concentrated nuclei is swept into the central part of the cavity. At t=30 s
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(Fig.35b), the crystals lifted by the liquid flow along the right wall begin to re-settle near
the left wall. In addition, a central region of lower grain density appears. This is because
the crystals in this region grew to such a large size that they settled down. This effect is
more evident in Fig.35¢ (t=50 s), which shows a pronounced vertical variation in the nuclei
density due to settling. The interface between the lower mushy zone and the upper nearly
solid-free liquid region (compare to Fig.34a) coincides with a relatively sharp vertical
gradient in the grain density. At t=100 s (Fig.35d), this interface is shifted upwards as the
sediment bed increased in height. The grain density above the bed is comparably lower. An
isolated region of lower grain density can also be observed at the bottom wall. This can be
explained by a remelting phenomenon, which kills a number of grains. The remelting is
due to the continued advection and deposition of solute-rich liquid in the already established
sediment bed at the bottom, resulting in a severe depression of the liquidus temperature in
this region.

The final grain size distribution is shown in Fig.36a. Note that in the absence of solid
transport the grain size (i.e., radius) would be uniformly equal to 0.62 mm corresponding
to no=10% m-3. The top zone of larger grains (~2 mm) can be directly attributed to the
sedimentation effect, while the large grains at the very bottom are due to the above
explained remelting phenomenon. A string of relatively small grains (less than 0.5 mm)
extends upwards from the lower-left corner and along the right wall. Referring back to
Fig.35, it can be seen that the location of this string coincides with the path of the highly
concentrated nuclei stream during the early parts of solidification. Also shown in Fig.36 is
the final grain size distribution for another simulation, where the nuclei density, ng, in the
nucleation law was increased to 101! m-3 (Fig.36b). This second simulation may be
viewed to correspond to a more grain-refined casting. The resulting overall smaller grain
size in this case has a profound effect on the solidification and transport phenomena [41]:
(i) the equiaxed crystals tend to grow in a more globulitic fashion, and (ii) there is less

relative motion between the liquid and solid phases due to the larger interfacial drag. One of
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the consequences is a much more uniform grain size distribution in the case of n,=1011 m-3
(Fig.36b) than for 109 m-3 (Fig.36a).

The effects of solid transport and different grain sizes on macrosegregation are
illustrated in Fig.37a to 37c, by comparing the results of three different simulations. Figure
37a corresponds to the case of a stationary solid phase, but with thermosolutal melt
convection, and no=10% m-3. Overall, large variations in the copper concentration are
present. The most prominent feature is the channel segregates. As opposed to the Pb-Sn
simulations presented in Section 5.1, the channels are oriented downward due to the
different direction of the solutal buoyancy forces in the Al-Cu alloy. Also, a highly
segregated Cu-rich region exists at the bottom of the cavity and near the right wall due to
the advection of solute-rich liquid during solidification. This macrosegregation pattern
should be contrasted with Figs.37b and 37c, which correspond to a moving solid phase
and ny=10% m-3 and 1011 m-3, respectively. In general, the macrosegregation is much less
severe than in Fig.37a, and no channel segregates are predicted. Since macrosegregation is
due to relative motion between the solid and liquid phases, solid transport can be expected
to reduce macrosegregation in the present system. However, in cases where the solute-rich
liquid is less dense and the solute-poor solid is more dense than the initial melt (as, for
example, for hypoeutectic Pb-Sn alloys) a counter-current liquid-solid flow would result,
causing very strong macrosegregation [30]. Comparing Figs.37b and 37c, it can be seen
that a finer grain size (no=10!1 m-3) in the Al-Cu system results not only in a more uniform
grain pattern, as already observed in Fig.36b, but also reduces the extent of

macrosegregation (due to less relative phase motion).

5.2.9 Comparison of the Model Predictions with NH4Cl-H20 Experiments.
Some limited validation of the model presented in Section 5.2 has been provided by
Beckermann and Wang [136] through comparison of model predictions with the NH4Cl-

H20 experiments of Beckermann et al. [21]. The test cell used in the experiments is
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schematically illustrated in Fig.38a and consists of a square enclosure surrounded on four
sides by heat exchangers through which a temperature-regulated coolant was circulated.
Initially, the enclosure contained an NH4Cl-70wt% H20O solution slightly above the
liquidus temperature. Upon initiation of cooling, melt convection and, with some delay,
equiaxed solidification commenced. Density gradients were visualized using a
shadowgraph system and internal cell temperatures were measured using small
thermocouple probes. A description of the experiments can be found in [21].

In the simulation, measured cell wall temperatures were used as boundary conditions.
Without presenting further details, a representative comparison of measured and predicted
results at an intermediate time is shown in Figs.38b and 38c. There appears to be good
agreement between the measured and predicted extent and shape of the bed of sedimented
NH4CI crystals at the bottom of the enclosure. Considering that this bed is the result of
complex melt convection and solid transport processes, even this limited comparison can be
viewed as an encouraging result. The two most critical uncertainties were found to be the
modeling of the generation of equiaxed crystals (the grain density, no, was adjusted in the
model to achieve realistic crystal sizes) and their growth in the convecting melt (i.e., the
dendrite tip growth and the convective mass transfer from the crystals, both of which
control the internal solid fraction of the crystals). Future research will be aimed at resolving

these issues.

5.3 Issues in Coupled Columnar and Equiaxed Solidification with

Convection

Although Sections 5.1 and 5.2 show some promise with regard to modeling of purely
columnar and equiaxed dendritic solidification, there are numerous additional issues that
need to be addressed before coupled columnar/equiaxed solidification and the CET can be
predicted for situations where convective transport is important. First, the columnar model

presented in Section 5.1 needs to be extended to account for dendrite tip undercooling at the

72



columnar front, because without this undercooling the growth of equiaxed crystals ahead of
the front would not be possible. This can be done using the multi-phase/-scale approach
along the same lines as shown in Sections 4 and 5.2. Special attention needs to be paid to
proper modeling of the flow in the columnar dendrite tip region, since it is in this region
where dendrite/flow interactions are especially important.

Probably the most critical modeling element will be the development of quantitative
models for the sources of equiaxed grains in the presence of convection. Convection is an
important mechanism in the separation or fragmentation of dendrites. The small solid
particles or fragments can be transported into the interior bulk melt where they may survive
and grow into equiaxed crystals. Crystals have been found to separate from mold walls and
from the upper, free liquid surface [26]. However, in the case of an already existing
columnar mushy zone, separation of dendrite fragments ("grain multiplication") can occur
in the columnar tip region or inside channel segregates. Two mechanisms have been
proposed: (i) mechanical, by the shear forces of the melt flow [17] and (ii) localized
remelting or "pinch off" [137], where coarsening kinetics play an important role [138]. All
theories have been experimentally confirmed in various situations, and the different
mechanisms may, in fact, operate simultaneously. To date, no quantitative models are
available to predict the fragmentation occurrence and rate.

In the area of grain multiplication by localized remelting, some recent work by Paradies
et al. [139] has shed considerable light on the physical phenomena involved and has
produced some first quantitative measurements. The fragmentation rate was measured in a
model experiment using the transparent SCN-acetone alloy and a growth chamber, where
the melt flow was along the columnar mushy zone with a precisely controlled flow rate,
concentration, and temperature. It was found that the dendrite side branches pinch off via
localized melting occurring close to the primary dendrite stem. The imposed velocity of the
melt flow altered the mushy zone morphology, and the fragmentation rate dramatically

increased with the flow rate. In these experiments, the velocity, temperature, and
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concentration were controlled globally, and the results were presented in terms of total
system parameters, such as chamber Reynolds number and time from the start of the
experiment. However, for this data to be useful in a continuum model (that solves for the
velocity, concentration and temperature distributions), the fragmentation rate would need to
be correlated in terms of the local parameters. Much work remains, and the need for more

experiments cannot be overemphasized.

6. CONCLUSIONS AND RECOMMENDATIONS

This chapter has summarized a number of fundamental studies of alloy solidification,
which have the goal of providing comprehensive models of the transport phenomena
occurring at the system scale while accounting for microstructural interactions. A large
variety of topics has been covered, ranging from diffusion dominated columnar and
equiaxed dendritic solidification to the simultaneous presence of melt convection and solid
transport. Nonetheless, all models propagate the same multiphase approach and the use of
volume-averaged continuum equations for each phase. Although the general procedures are
not new, their application to alloy solidification results in a unique framework for
incorporating both micro- and macroscale effects. In any case, the key to successful
modeling is the proper specification of the interface topology and the phase interactions.
Several examples have demonstrated that in the case of diffusion dominated solidification,
considerable progress has been made in the prediction of the compositional and structural
features of solidified parts. With the consideration of convective transport, the fi€ld has
moved away from traditional metallurgy into the domain of thermal scientists, who can
bring their tools to bear. Improved communication and close collaboration will be
necessary to resolve the many remaining modeling issues.

One advantage of the theoretical framework reviewed here is that it allows for the
identification of the critical modeling elements requiring further research attention. The

main issues can be summarized as follows:
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* quantitative models for the origin and destruction of grains, especially in the presence
of convection where fragmentation, agglomeration, remelting, etc. can become
important;

* topological relations that do not rely on a priori knowledge of the dendrite shapes and
also take into account the rapid changes in the interface geometry during the very initial
and final growth stages;

+ validated models for dendrite tip growth in an undercooled and convecting melt;

+ improved multiparticle interfacial drag models, particularly at high liquid fractions;

» multiparticle interfacial solute transfer models, with and without convection, that are
valid during solid/liquid phase change;

+ models describing the two-phase rheology as a function of the microstructure;

* models for the effective thermal conductivities and mass diffusivities in the averaged
equations for each phase;

» modeling of the dispersive fluxes in the presence of turbulent convection.

Other issues arise in the extension of the models to rapid solidification rates, multi-
component alloys, realistic phase diagrams including the eutectic and peritectic reactions,
mold filling, porosity formation, hot cracking, and others, none of which are discussed
here. Furthermore, the modeling work must be accompanied by the development of
improved numerical algorithms for multiphase problems.

In closing it should be noted that the transfer of this modeling and simulation
technology to industry is taking place, to a large extent, through commercial casting
solidification codes (see [15]). It is fortunate that these codes are finding rapid and
widespread acceptance in industry and are being integrated with other product and
manufacturing process design software. However, despite the obvious successes, caution
should be exercised when using the codes, particularly because of the many modeling

approximations or empiricism incorporated in some of them. As the appetite for more
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advanced models continues to grow, the need for more fundamental research cannot be

neglected.
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Table 1. Summary of the microscopic and macroscopic conservation equations together with some constitutive relations

Microscopic conservation Macroscopic conservation equations Interfacial balances Dispersive fluxes
equations
d '
Mass —px + V-(pxv) =0 Am_%xv + V-(&xpx<vi>k) = T Ty Tkj+ T ='0 —
ot ot ik
) 0 « K t A A
Momentum E” =(Pxvk) + V- (pxvkvy) = %AmerASnVJ + V- (Egpr<vi>k<y>k) = Mg+ Mjx=0 <T> = - <PxVk VK>
-Vpk + V- T + by & V<poK+ V(KT >+ <Tg>) + 3 My; + Exk<by>k
JJzk
d d K K t A A
Energy M@w:& + V- (phyvy) = MﬂaAmrowA:xv ) + V-(expr<hi>kavi>k) = Qxj + Qjk =0 <qgx> = <pxhgvg>
-V gk -V (<qi> + <qi>) + 3, Q;
=k
A
Species % nAowOC + V- (pxCxvy) = ” Am_%on 1K) +V - (€pr<Cy >kavy>k) = Jgj+Jk=0 A.:_nv = <pxCyVic>
-V jk V<o + <) + X
ik
Total interfacial transfers Interfacial transfers Interfacial stress and transfers
due to phase change due to diffusion/convection
1
Mass Ty Ng=-v, ._. Pk(Vk - Wik)-ng dA = Skjpk Wnkj -—
Akj
r d r 1 — d
Momentum  My; = My; + My My =- Vo PkVk(vk - W) nxdA = v kil kj My = <o ._.Ax ‘ngdA (see Section 5.2.4)
Akj Ax;
r d r —_ d
Energy Qxj = Quj + Q; Q= <o .—bw:x?x wi)-ngdA = hyjl; Qg =- ﬂ T:n ‘ngdA (local thermal equlibrium)
Agj Ayj
. r d — d 1 . SkipkD
Species Jij = Jkj + J; .:m. =- <o ..‘Dwﬁ_n?x Wwi)-nkdA = Cy;l; Jgj=- v, jk ‘ngdA = M._NI_M.I_AA Cyj - <C>k)
Akj Agj

— ——

— —



Table 2. Summary of the macroscopic conservation equations
describing columnar solidification.

Mixture Mass Conservation
d 0 0
FEPD + V-(e1p1vD) = - 3(eapa) - 5 (EyPy)

Liquid Species Conservation

elp1 %(% +e1p1 vi-VCy = V-(eip1Dy VC)
- EaPa aact - eypy%g{x

+[C1- Co] gt(eapa) +[Ci- G g_t(eypy)

Solid Species Conservation (s = a, Y)

Dg
EsPs %S [Ca - Csl {—(Esps) + Ssps }

Mixture Energy Conservation

h
o1 G|, 3+ 691 FE| o, Y T= Ve + esks) VT

oh ohy| 7T
[apa G, + ewr 5T |5

ahi| aC, 3hg| 3C ac
e 30| 1 - caPa SCE| 15 - ePrIC 1 a

ohy { aCy 9Cq 9Cy
+ac1’T EIPL 3 *EaPa 5 +EPY 5
d J
- [C1- Col 3{eaPa) - [C1- Cyl 5(erpy)

+ [h1 - ha) S€ape) + [h1 - byl Herpy)

Liquid Momentum Conservation

el %:—' +ep1 VIEVVI=-€Vp + V- (el Vvi)
+ V- (el [Vvil' + py [viVey + Ve |}

T B—t(eap @) + %(EYPY)] - KD v + epprg
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Table 3. Summary of a multiphase mode! for equiaxed dendritic solidification

Mass Conservation
Solid Phase

J
a_t(pses) + V. (psesvg) = T
Total Liquid Phase
J
3PeED + V-(peerve) = - T
Interfacial Species Balance (for Calculating Phase Change Rate)
- _ PsSsDs . — SeDp =
(Ce- CsgIs= S,z s( Csd'Cs)*"%( Ce-Cp+
_ S
ad Ce — R
[Pded—, + Pdedvd'V Ce - V-(pgeaDgV Ce)l
ot
Momentum Conservation
Solid Phase
Jd
a(psasvs) + Vo(psesvevs) = -£Vp + V’(MQESVVS) + Mg + PsEsE
Total Liquid Phase
d
SApErve) + V(prerveve) = -6£Vp + V-(utesVve) - ME + efpeg + V-[ypeer(v - vs)(ve - vo)]
ot
Species Conservation
Solid Phase
d — SsDs =
SHPSESCo) + V(psesvsCo) = V-(peesDVCy) + Tsals + EEE=5( Ty Cy)
Total Liquid Phase
d — S.D. —
S PECH+V-(prerviCe) = V-(peDFVCH - [ Coalst %( Csd- Co)l

+ V{pres(ve - vs)[Cr - kvCq - (1-xy)C1]}
Mixture Energy Conservation

2 {(pstacs + PreT] + V-[(pscacsvs + Perervp)T] =

V-[(esks+ ek )VT] + [g[Ah + (cs - ¢))TE]

Auxiliary Relations for Secondary Variables
Interdendritic Liquid Fraction

ad -
3(PdEd) + V-(pdeava) = Sep1 Wne - s
Extradendritic Liquid Fraction

£]=Ef- €4
Extradendritic Liquid Concentration

Cy = (PeeCt - paed Ce(pie)
Inter- and Extra-dendritic Liquid Velocities

va=vs e B e vt = v+ () B v vy
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